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RAGtime?

● Scott Joplin: “King of Ragtime”
● Not about the music genre
● Retrieval-Augmented Generation
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Hype vs Reality
● LLM, GPT, Vector DB, AGI, MCP, Langchain, AI Agents… 
● Data lakes/Warehouses/Lakehouses, Serverless DBs… 
● Skepticism

– “As we learn about how the technology works, we realize that GenAI is 
nothing but statistically derived plagiarism” —Prof. Ulises A. Mejias (SUNY)

● Building practical tools is the answer
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About me (Postgres nerd, not AI guru)

● Systems & Database Architect, based in Edinburgh, Scotland
● Open Source user & contributor (25+ years)
● PostgreSQL exclusively (17+ years), Contributor
● Member, PostgreSQL Europe Diversity Committee
● Author, PostgreSQL Mistakes and How to Avoid Them
● Co-author, PostgreSQL 16 Administration Cookbook

● pg_statviz PostgreSQL extension

https://www.postgresql.eu/diversity/diversity_committee/
https://mng.bz/vKd4
https://www.amazon.com/PostgreSQL-Administration-Cookbook-real-world-challenges/dp/1835460585
https://github.com/vyruss/pg_statviz
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What we’ll cover

● What?
● Why?
● How?

● Problem solving
● Building
● Tips
● Caveats
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What is GenAI?
● GenAI: Generative (statistical) model which produces 

pictures, audio, video, etc.
● Deep generative model (as in deep learning)

– Trained on large corpus of copyrighted works
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What are LLMs?
● LLM: Large Language 

Model, a deep neural 
network for language-
based tasks

● GPT: Generative Pre-
trained Transformer
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What is the problem with LLMs?
● How much time do you have?
● Seriously now… they can lie

– Make stuff up when they don’t know the answer
– “Hallucination” (politest term I could find)

● Their knowledge is frozen at the time of training
– Gets progressively more stale
– They don’t have access to your data

● Availability Heuristic – Einstellung Effect (“commonness 
bias”?)
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You're my hallu—, hallucination...
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What is RAG?
● Baby don’t hurt me
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What is RAG?
● Retrieval-Augmented Generation

– Incorporates information retrieval in the LLM 
response generation

– Addresses the aforementioned problems
● Reduces hallucinations
● Data is fresh

– Supplements information that was not available in 
the LLM training data
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What can we use for information retrieval?
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What can we use for AI? (Learners)
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What can we use for AI? (Professionals)
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How does RAG work?                                     (i)
● The secret sauce: vector 

embeddings
– aka word embeddings
– Words encoded into vectors of 

real numbers
● Words clustered together by 

meaning
– Distributional semantics

https://github.com/touretzkyds/WordEmbedding
Demo

https://github.com/touretzkyds/WordEmbeddingDemo
https://github.com/touretzkyds/WordEmbeddingDemo
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How does RAG work?                                    (ii)
● “Indexing”

– Convert the text input using an embedding model
– Store the embeddings generated in a database

●  “Retrieval”
– User query fetches the most relevant documents

● “Augmentation”
– Prompt engineering by feeding in the retrieved documents

● “Generation”
– Craft the response with the LLM



RAGtime with Postgres: AI power with pgvector and Retrieval-Augmented Generation

FOSSY 2025
Portland State University, 2025-08-01

How does RAG work in Postgres?                (i)
● pgvector extension is your friend

– Adds vector data type
– Store it as a simple column in a table

● Now the good stuff is inside your database
– You can store it alongside the original document 

and other metadata 
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How does RAG work in Postgres?               (ii)
CREATE EXTENSION pgvector;
CREATE TABLE documents (
  content text
  embedding vector(384)
);
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How does RAG work in Postgres?              (iii)
SELECT content
FROM documents
ORDER BY
  (1 - embedding <-> 'my query'::vector);

● L2 (Euclidean) distance between two points or vectors
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Okay, but isn’t this going to be slow?
● Isn’t this like searching with LIKE?
● No, pgvector offers indexes

– IVFFlat
– HNSW
CREATE INDEX ON documents
USING ivfflat (embedding vector_l2_ops)
WITH (lists = 100);
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Problem Solving
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The problem
● You have a large legacy codebase
● What if your code experts

– have left the organization?
– are too busy with other work?
– have forgotten what they did 10 years ago?
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A possible solution
● Create a RAG system to be your “code expert”
● Index your code repositories’ content
● Create an interface to query said system

– Web chatbot
– Slackbot
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Let’s build a solution
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A real-world RAG application workflow
● Retrieve code from repositories
● Generate embeddings and into database
● Enter natural language query into interface
● Optimize query
● Use optimized query to retrieve code snippets from database
● Add code snippet context to original query to augment prompt
● Send engineered prompt to LLM
● Format and display response
● Bonus points: keep conversation history for each interaction



RAGtime with Postgres: AI power with pgvector and Retrieval-Augmented Generation

FOSSY 2025
Portland State University, 2025-08-01

Clone repositories locally
● Write a Python script that clones the repos
import os
from github import Github
github_token = os.getenv('GITHUB_TOKEN')
g = Github(github_token)
user = g.get_user()
repos = user.get_repos(affiliation='owner')
for repo in repos:
    ...
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Prepare your database
CREATE TABLE source_embeddings (
  repo_name text not null,
  file_path text not null,
  content text not null,
  semantic_embedding vector(384),
  code_embedding vector(256),
  created_at timestamptz DEFAULT now(),
  git_commit text,
  PRIMARY KEY(repo_name, file_path)
);
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Index your repositories                                   (i)
● Write a Python script that creates the embeddings in the DB for each file

– Dual indexing strategy (semantic and code embeddings)
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer, AutoModel
semantic_model = SentenceTransformer(
    'sentence-transformers/all-MiniLM-L6-v2', device='cpu',
    model_kwargs={'attn_implementation': 'eager'})
code_model = AutoModel.from_pretrained(
    'Salesforce/codet5p-110m-embedding', trust_remote_code=True,
    attn_implementation="eager")
code_tokenizer = AutoTokenizer.from_pretrained(
    'Salesforce/codet5p-110m-embedding', trust_remote_code=True)
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Index your repositories                                  (ii)
● Preprocess code for better embedding quality

– Normalize whitespace within each line
– Remove comments
– Replace string literals with a placeholder
– Remove consecutive blank lines

lines = text.split('\n')
processed_lines = []
for line in lines:
    line = re.sub(r'\s+', ' ', line)
    line = re.sub(r'#.*$', '', line)
    processed_lines.append(line.strip())
processed_text = '\n'.join(processed_lines)
processed_text = re.sub(r'"[^"]*"', '"STR"', processed_text)
processed_text = re.sub(r"'[^']*'", "'STR'", processed_text)
processed_text = re.sub(r'\n\s*\n\s*\n', '\n\n', processed_text))
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Generate embeddings                                    (i)
● Chunking is an imprecise art (trial and error)
● For semantic, split code into overlapping chunks

def chunk_code_for_semantic(
    text: str, 
    chunk_size: int = 1000, 
    overlap: int = 200) -> List[str]:

    ...
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Generate embeddings                                   (ii)
● For CodeT5+ we use smaller chunks to match its

maximum context window

def chunk_code_for_codet5(
    text: str, 
    chunk_size: int = 512) -> List[str]:
    ...
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Generate embeddings                                  (iii)
● Tokenize the input

import torch
import numpy
for chunk in chunks:
    inputs = code_tokenizer(chunk,
        padding=True, truncation=True,
        max_length=512, return_tensors="pt")
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Generate embeddings                                  (iv)
● Generate code embeddings:

with torch.no_grad():
    outputs = code_model(**inputs)
    embedding_array = 
       outputs.squeeze(0).detach().cpu().numpy()
    chunk_embeddings.append(emb_array)
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Generate embeddings                                   (v)
● Average and normalize the embeddings from all chunks:

stacked = np.stack(chunk_embeddings)
final_embedding = np.mean(stacked, axis=0)
norm = np.linalg.norm(final_embedding)
if norm > 0:
    final_embedding = final_embedding / norm
return [float(x) for x in final_embedding]
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Generate embeddings                                  (vi)
● Generate semantic embeddings, average and normalize

for chunk in chunks:
    semantic_emb = semantic_model.encode(chunk,
        convert_to_tensor=False)
    semantic_chunk_embeddings.append(semantic_emb)
    semantic_stacked = np.stack(semantic_chunk_embeddings)
    semantic_array = np.mean(semantic_stacked, axis=0)
    semantic_norm = np.linalg.norm(semantic_array)
    if semantic_norm > 0:
        semantic_array = semantic_array / semantic_norm
    return [float(x) for x in semantic_array]
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Store embeddings in database
INSERT INTO source_embeddings (repo_name,
  file_path, content, semantic_embedding,
  code_embedding, git_commit)
VALUES (%s, %s, %s, %s::vector, %s::vector, %s)
ON CONFLICT (repo_name, file_path)
DO UPDATE SET content = EXCLUDED.content,
  semantic_embedding = EXCLUDED.semantic_embedding,
  code_embedding = EXCLUDED.code_embedding,
  git_commit = EXCLUDED.git_commit;
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Index embeddings
CREATE INDEX ON source_embeddings 
USING ivfflat (semantic_embedding
  vector_cosine_ops) WITH (lists = 100);

CREATE INDEX ON source_embeddings
USING ivfflat (code_embedding 
  vector_cosine_ops) WITH (lists = 100);
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Query the database                                         (i)
● Here I cheat a little: I have the LLM optimize the natural language prompt

– It outputs a semantic query and a code query
● Generate query embeddings using both semantic and code queries
query_semantic, query_code =
    await get_embedding(query, code_query)    

● pgvector expects [x,y,z] format
semantic_vector = f"[{','.join(str(round(x, 8)) 
    for x in query_semantic)}]"
code_vector = f"[{','.join(str(round(x, 8))
    for x in query_code)}]"
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Query the database                                        (ii)
WITH ranked AS (
SELECT (repo_name, file_path, content, 
  semantic_embedding::text, code_embedding::text,
  (1 - (semantic_embedding <=> %s::vector)) AS semantic_sim,
  (1 - (code_embedding <=> %s::vector)) AS code_sim, 
  ROW_NUMBER() OVER
  (ORDER BY (1 - (semantic_embedding <=> %s::vector)) DESC) 
  AS semantic_rank, 
  ROW_NUMBER() OVER
  (ORDER BY (1 - (code_embedding <=> %s::vector)) DESC) 
  AS code_rank
FROM source_embeddings)
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Query the database                                       (iii)
● I then SELECT FROM ranked 

– The top 20 semantic matches
– The top 10 code matches

● If they score in both those top brackets they get a boost

ORDER BY dual_match DESC, similarity DESC



RAGtime with Postgres: AI power with pgvector and Retrieval-Augmented Generation

FOSSY 2025
Portland State University, 2025-08-01

Send the augmented query to the LLM
system_prompt = ("""You are an intelligent code assistant, with a heavy focus 
on PostgreSQL. Below you will find relevant code patterns from the user's 
codebase. Use these patterns to provide accurate, contextual responses about 
their specific database implementation.
The code patterns are categorized by match type:
  - HIGHLY RELEVANT: These patterns matched both semantically and by code structure,
  making them particularly important examples.
  - Semantic match: These patterns matched based on natural language understanding
  of the query.
  - Code structure match: These patterns matched based on code structure similarity.
HIGHLY RELEVANT patterns first, then Semantic and Code matches.
While you can describe the patterns you see, do not directly quote the code.
Your response format must be in Markdown. Format any code blocks with ``` 
prefix."""
f"{code_context}")
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Sample queries
● For an insurance company:

– How do we price life insurance contracts?
– What is the method of calculation for additional 

contract discounts?
● For the PostgreSQL Europe conference system:

– What is the workflow for adding an attendee 
registration to the system?
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Tips
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Application-side                                               (i)
● I used FastAPI to build a web interface and Slack Python 

libraries to create a bot
– You can make this into a simple API or cmdline tool 

● By using sentence-transformers and other free 
resources you can save costs
– vs. using an expensive commercial API to index the data

● If your system consists of multiple repositories, this tool can 
give you answers of system-level scope



RAGtime with Postgres: AI power with pgvector and Retrieval-Augmented Generation

FOSSY 2025
Portland State University, 2025-08-01

Application-side                                              (ii)
● You can send your augmented prompt to an external LLM API

– Cost ($$$)
– Stability (this server is overloaded...)
– Reliability (will the model be the same tomorrow?)

● You can run Ollama locally and run your LLM yourself
– Best for information security, cost
– I would use codellama:7b-instruct for my chatbot
– Capabilities may not be on par with commercial offerings
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Database-side
● I used IVFFlat

– Faster index creation
● HNSW

– Can give more accurate results
– Performance: faster queries
– Index build time is slower
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Caveats
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Caveats                                                             (i)
● LLMs can generate misinformation even when pulling 

from factually correct sources
– If they misinterpret the context

● “Open source” models
– Where’s the training data?
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Caveats                                                            (ii)
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● YouTube: https://youtube.com/JimmyAngelakos
● Mastodon: https://fosstodon.org/@vyruss
● BlueSky: https://bsky.app/profile/vyruss.org
● LinkedIn: https://linkedin.com/in/vyruss

Find me on socials

https://youtube.com/JimmyAngelakos
https://fosstodon.org/@vyruss
https://bsky.app/profile/vyruss.org
https://linkedin.com/in/vyruss
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Thank you 

Questions?     
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