
Event / Conference name
Location, Date

RAGtime with Postgres
AI power with pgvector and Retrieval-Augmented Generation

FOSSY 2025

Jimmy Angelakos

FOSSY 2025
Portland State University, 2025-08-01

RAGtime?

● Scott Joplin: “King of Ragtime”
● Not about the music genre
● Retrieval-Augmented Generation

18.207294

RAGtime with Postgres: AI power with pgvector and Retrieval-Augmented Generation

FOSSY 2025
Portland State University, 2025-08-01

Hype vs Reality
● LLM, GPT, Vector DB, AGI, MCP, Langchain, AI Agents…
● Data lakes/Warehouses/Lakehouses, Serverless DBs…
● Skepticism

– “As we learn about how the technology works, we realize that GenAI is
nothing but statistically derived plagiarism” —Prof. Ulises A. Mejias (SUNY)

● Building practical tools is the answer

FOSSY 2025
Portland State University, 2025-08-01

About me (Postgres nerd, not AI guru)

● Systems & Database Architect, based in Edinburgh, Scotland
● Open Source user & contributor (25+ years)
● PostgreSQL exclusively (17+ years), Contributor
● Member, PostgreSQL Europe Diversity Committee
● Author, PostgreSQL Mistakes and How to Avoid Them
● Co-author, PostgreSQL 16 Administration Cookbook

● pg_statviz PostgreSQL extension

https://www.postgresql.eu/diversity/diversity_committee/
https://mng.bz/vKd4
https://www.amazon.com/PostgreSQL-Administration-Cookbook-real-world-challenges/dp/1835460585
https://github.com/vyruss/pg_statviz

RAGtime with Postgres: AI power with pgvector and Retrieval-Augmented Generation

FOSSY 2025
Portland State University, 2025-08-01

What we’ll cover

● What?
● Why?
● How?

● Problem solving
● Building
● Tips
● Caveats

RAGtime with Postgres: AI power with pgvector and Retrieval-Augmented Generation

FOSSY 2025
Portland State University, 2025-08-01

What is GenAI?
● GenAI: Generative (statistical) model which produces

pictures, audio, video, etc.
● Deep generative model (as in deep learning)

– Trained on large corpus of copyrighted works

RAGtime with Postgres: AI power with pgvector and Retrieval-Augmented Generation

FOSSY 2025
Portland State University, 2025-08-01

What are LLMs?
● LLM: Large Language

Model, a deep neural
network for language-
based tasks

● GPT: Generative Pre-
trained Transformer

RAGtime with Postgres: AI power with pgvector and Retrieval-Augmented Generation

FOSSY 2025
Portland State University, 2025-08-01

What is the problem with LLMs?
● How much time do you have?
● Seriously now… they can lie

– Make stuff up when they don’t know the answer
– “Hallucination” (politest term I could find)

● Their knowledge is frozen at the time of training
– Gets progressively more stale
– They don’t have access to your data

● Availability Heuristic – Einstellung Effect (“commonness
bias”?)

RAGtime with Postgres: AI power with pgvector and Retrieval-Augmented Generation

FOSSY 2025
Portland State University, 2025-08-01

You're my hallu—, hallucination...

RAGtime with Postgres: AI power with pgvector and Retrieval-Augmented Generation

FOSSY 2025
Portland State University, 2025-08-01

What is RAG?
● Baby don’t hurt me

RAGtime with Postgres: AI power with pgvector and Retrieval-Augmented Generation

FOSSY 2025
Portland State University, 2025-08-01

What is RAG?
● Retrieval-Augmented Generation

– Incorporates information retrieval in the LLM
response generation

– Addresses the aforementioned problems
● Reduces hallucinations
● Data is fresh

– Supplements information that was not available in
the LLM training data

RAGtime with Postgres: AI power with pgvector and Retrieval-Augmented Generation

FOSSY 2025
Portland State University, 2025-08-01

What can we use for information retrieval?

RAGtime with Postgres: AI power with pgvector and Retrieval-Augmented Generation

FOSSY 2025
Portland State University, 2025-08-01

What can we use for AI? (Learners)

RAGtime with Postgres: AI power with pgvector and Retrieval-Augmented Generation

FOSSY 2025
Portland State University, 2025-08-01

What can we use for AI? (Professionals)

RAGtime with Postgres: AI power with pgvector and Retrieval-Augmented Generation

FOSSY 2025
Portland State University, 2025-08-01

How does RAG work? (i)
● The secret sauce: vector

embeddings
– aka word embeddings
– Words encoded into vectors of

real numbers
● Words clustered together by

meaning
– Distributional semantics

https://github.com/touretzkyds/WordEmbedding
Demo

https://github.com/touretzkyds/WordEmbeddingDemo
https://github.com/touretzkyds/WordEmbeddingDemo

RAGtime with Postgres: AI power with pgvector and Retrieval-Augmented Generation

FOSSY 2025
Portland State University, 2025-08-01

How does RAG work? (ii)
● “Indexing”

– Convert the text input using an embedding model
– Store the embeddings generated in a database

● “Retrieval”
– User query fetches the most relevant documents

● “Augmentation”
– Prompt engineering by feeding in the retrieved documents

● “Generation”
– Craft the response with the LLM

RAGtime with Postgres: AI power with pgvector and Retrieval-Augmented Generation

FOSSY 2025
Portland State University, 2025-08-01

How does RAG work in Postgres? (i)
● pgvector extension is your friend

– Adds vector data type
– Store it as a simple column in a table

● Now the good stuff is inside your database
– You can store it alongside the original document

and other metadata

RAGtime with Postgres: AI power with pgvector and Retrieval-Augmented Generation

FOSSY 2025
Portland State University, 2025-08-01

How does RAG work in Postgres? (ii)
CREATE EXTENSION pgvector;
CREATE TABLE documents (
 content text
 embedding vector(384)
);

RAGtime with Postgres: AI power with pgvector and Retrieval-Augmented Generation

FOSSY 2025
Portland State University, 2025-08-01

How does RAG work in Postgres? (iii)
SELECT content
FROM documents
ORDER BY
 (1 - embedding <-> 'my query'::vector);

● L2 (Euclidean) distance between two points or vectors

RAGtime with Postgres: AI power with pgvector and Retrieval-Augmented Generation

FOSSY 2025
Portland State University, 2025-08-01

Okay, but isn’t this going to be slow?
● Isn’t this like searching with LIKE?
● No, pgvector offers indexes

– IVFFlat
– HNSW
CREATE INDEX ON documents
USING ivfflat (embedding vector_l2_ops)
WITH (lists = 100);

RAGtime with Postgres: AI power with pgvector and Retrieval-Augmented Generation

FOSSY 2025
Portland State University, 2025-08-01

Problem Solving

RAGtime with Postgres: AI power with pgvector and Retrieval-Augmented Generation

FOSSY 2025
Portland State University, 2025-08-01

The problem
● You have a large legacy codebase
● What if your code experts

– have left the organization?
– are too busy with other work?
– have forgotten what they did 10 years ago?

RAGtime with Postgres: AI power with pgvector and Retrieval-Augmented Generation

FOSSY 2025
Portland State University, 2025-08-01

A possible solution
● Create a RAG system to be your “code expert”
● Index your code repositories’ content
● Create an interface to query said system

– Web chatbot
– Slackbot

FOSSY 2025
Portland State University, 2025-08-01

Let’s build a solution

RAGtime with Postgres: AI power with pgvector and Retrieval-Augmented Generation

FOSSY 2025
Portland State University, 2025-08-01

A real-world RAG application workflow
● Retrieve code from repositories
● Generate embeddings and into database
● Enter natural language query into interface
● Optimize query
● Use optimized query to retrieve code snippets from database
● Add code snippet context to original query to augment prompt
● Send engineered prompt to LLM
● Format and display response
● Bonus points: keep conversation history for each interaction

RAGtime with Postgres: AI power with pgvector and Retrieval-Augmented Generation

FOSSY 2025
Portland State University, 2025-08-01

Clone repositories locally
● Write a Python script that clones the repos
import os
from github import Github
github_token = os.getenv('GITHUB_TOKEN')
g = Github(github_token)
user = g.get_user()
repos = user.get_repos(affiliation='owner')
for repo in repos:
 ...

RAGtime with Postgres: AI power with pgvector and Retrieval-Augmented Generation

FOSSY 2025
Portland State University, 2025-08-01

Prepare your database
CREATE TABLE source_embeddings (
 repo_name text not null,
 file_path text not null,
 content text not null,
 semantic_embedding vector(384),
 code_embedding vector(256),
 created_at timestamptz DEFAULT now(),
 git_commit text,
 PRIMARY KEY(repo_name, file_path)
);

RAGtime with Postgres: AI power with pgvector and Retrieval-Augmented Generation

FOSSY 2025
Portland State University, 2025-08-01

Index your repositories (i)
● Write a Python script that creates the embeddings in the DB for each file

– Dual indexing strategy (semantic and code embeddings)
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer, AutoModel
semantic_model = SentenceTransformer(
 'sentence-transformers/all-MiniLM-L6-v2', device='cpu',
 model_kwargs={'attn_implementation': 'eager'})
code_model = AutoModel.from_pretrained(
 'Salesforce/codet5p-110m-embedding', trust_remote_code=True,
 attn_implementation="eager")
code_tokenizer = AutoTokenizer.from_pretrained(
 'Salesforce/codet5p-110m-embedding', trust_remote_code=True)

RAGtime with Postgres: AI power with pgvector and Retrieval-Augmented Generation

FOSSY 2025
Portland State University, 2025-08-01

Index your repositories (ii)
● Preprocess code for better embedding quality

– Normalize whitespace within each line
– Remove comments
– Replace string literals with a placeholder
– Remove consecutive blank lines

lines = text.split('\n')
processed_lines = []
for line in lines:
 line = re.sub(r'\s+', ' ', line)
 line = re.sub(r'#.*$', '', line)
 processed_lines.append(line.strip())
processed_text = '\n'.join(processed_lines)
processed_text = re.sub(r'"[^"]*"', '"STR"', processed_text)
processed_text = re.sub(r"'[^']*'", "'STR'", processed_text)
processed_text = re.sub(r'\n\s*\n\s*\n', '\n\n', processed_text))

RAGtime with Postgres: AI power with pgvector and Retrieval-Augmented Generation

FOSSY 2025
Portland State University, 2025-08-01

Generate embeddings (i)
● Chunking is an imprecise art (trial and error)
● For semantic, split code into overlapping chunks

def chunk_code_for_semantic(
 text: str,
 chunk_size: int = 1000,
 overlap: int = 200) -> List[str]:

 ...

RAGtime with Postgres: AI power with pgvector and Retrieval-Augmented Generation

FOSSY 2025
Portland State University, 2025-08-01

Generate embeddings (ii)
● For CodeT5+ we use smaller chunks to match its

maximum context window

def chunk_code_for_codet5(
 text: str,
 chunk_size: int = 512) -> List[str]:
 ...

RAGtime with Postgres: AI power with pgvector and Retrieval-Augmented Generation

FOSSY 2025
Portland State University, 2025-08-01

Generate embeddings (iii)
● Tokenize the input

import torch
import numpy
for chunk in chunks:
 inputs = code_tokenizer(chunk,
 padding=True, truncation=True,
 max_length=512, return_tensors="pt")

RAGtime with Postgres: AI power with pgvector and Retrieval-Augmented Generation

FOSSY 2025
Portland State University, 2025-08-01

Generate embeddings (iv)
● Generate code embeddings:

with torch.no_grad():
 outputs = code_model(**inputs)
 embedding_array =
 outputs.squeeze(0).detach().cpu().numpy()
 chunk_embeddings.append(emb_array)

RAGtime with Postgres: AI power with pgvector and Retrieval-Augmented Generation

FOSSY 2025
Portland State University, 2025-08-01

Generate embeddings (v)
● Average and normalize the embeddings from all chunks:

stacked = np.stack(chunk_embeddings)
final_embedding = np.mean(stacked, axis=0)
norm = np.linalg.norm(final_embedding)
if norm > 0:
 final_embedding = final_embedding / norm
return [float(x) for x in final_embedding]

RAGtime with Postgres: AI power with pgvector and Retrieval-Augmented Generation

FOSSY 2025
Portland State University, 2025-08-01

Generate embeddings (vi)
● Generate semantic embeddings, average and normalize

for chunk in chunks:
 semantic_emb = semantic_model.encode(chunk,
 convert_to_tensor=False)
 semantic_chunk_embeddings.append(semantic_emb)
 semantic_stacked = np.stack(semantic_chunk_embeddings)
 semantic_array = np.mean(semantic_stacked, axis=0)
 semantic_norm = np.linalg.norm(semantic_array)
 if semantic_norm > 0:
 semantic_array = semantic_array / semantic_norm
 return [float(x) for x in semantic_array]

RAGtime with Postgres: AI power with pgvector and Retrieval-Augmented Generation

FOSSY 2025
Portland State University, 2025-08-01

Store embeddings in database
INSERT INTO source_embeddings (repo_name,
 file_path, content, semantic_embedding,
 code_embedding, git_commit)
VALUES (%s, %s, %s, %s::vector, %s::vector, %s)
ON CONFLICT (repo_name, file_path)
DO UPDATE SET content = EXCLUDED.content,
 semantic_embedding = EXCLUDED.semantic_embedding,
 code_embedding = EXCLUDED.code_embedding,
 git_commit = EXCLUDED.git_commit;

RAGtime with Postgres: AI power with pgvector and Retrieval-Augmented Generation

FOSSY 2025
Portland State University, 2025-08-01

Index embeddings
CREATE INDEX ON source_embeddings
USING ivfflat (semantic_embedding
 vector_cosine_ops) WITH (lists = 100);

CREATE INDEX ON source_embeddings
USING ivfflat (code_embedding
 vector_cosine_ops) WITH (lists = 100);

RAGtime with Postgres: AI power with pgvector and Retrieval-Augmented Generation

FOSSY 2025
Portland State University, 2025-08-01

Query the database (i)
● Here I cheat a little: I have the LLM optimize the natural language prompt

– It outputs a semantic query and a code query
● Generate query embeddings using both semantic and code queries
query_semantic, query_code =
 await get_embedding(query, code_query)

● pgvector expects [x,y,z] format
semantic_vector = f"[{','.join(str(round(x, 8))
 for x in query_semantic)}]"
code_vector = f"[{','.join(str(round(x, 8))
 for x in query_code)}]"

RAGtime with Postgres: AI power with pgvector and Retrieval-Augmented Generation

FOSSY 2025
Portland State University, 2025-08-01

Query the database (ii)
WITH ranked AS (
SELECT (repo_name, file_path, content,
 semantic_embedding::text, code_embedding::text,
 (1 - (semantic_embedding <=> %s::vector)) AS semantic_sim,
 (1 - (code_embedding <=> %s::vector)) AS code_sim,
 ROW_NUMBER() OVER
 (ORDER BY (1 - (semantic_embedding <=> %s::vector)) DESC)
 AS semantic_rank,
 ROW_NUMBER() OVER
 (ORDER BY (1 - (code_embedding <=> %s::vector)) DESC)
 AS code_rank
FROM source_embeddings)

RAGtime with Postgres: AI power with pgvector and Retrieval-Augmented Generation

FOSSY 2025
Portland State University, 2025-08-01

Query the database (iii)
● I then SELECT FROM ranked

– The top 20 semantic matches
– The top 10 code matches

● If they score in both those top brackets they get a boost

ORDER BY dual_match DESC, similarity DESC

RAGtime with Postgres: AI power with pgvector and Retrieval-Augmented Generation

FOSSY 2025
Portland State University, 2025-08-01

Send the augmented query to the LLM
system_prompt = ("""You are an intelligent code assistant, with a heavy focus
on PostgreSQL. Below you will find relevant code patterns from the user's
codebase. Use these patterns to provide accurate, contextual responses about
their specific database implementation.
The code patterns are categorized by match type:
 - HIGHLY RELEVANT: These patterns matched both semantically and by code structure,
 making them particularly important examples.
 - Semantic match: These patterns matched based on natural language understanding
 of the query.
 - Code structure match: These patterns matched based on code structure similarity.
HIGHLY RELEVANT patterns first, then Semantic and Code matches.
While you can describe the patterns you see, do not directly quote the code.
Your response format must be in Markdown. Format any code blocks with ```
prefix."""
f"{code_context}")

RAGtime with Postgres: AI power with pgvector and Retrieval-Augmented Generation

FOSSY 2025
Portland State University, 2025-08-01

Sample queries
● For an insurance company:

– How do we price life insurance contracts?
– What is the method of calculation for additional

contract discounts?
● For the PostgreSQL Europe conference system:

– What is the workflow for adding an attendee
registration to the system?

FOSSY 2025
Portland State University, 2025-08-01

Tips

RAGtime with Postgres: AI power with pgvector and Retrieval-Augmented Generation

FOSSY 2025
Portland State University, 2025-08-01

Application-side (i)
● I used FastAPI to build a web interface and Slack Python

libraries to create a bot
– You can make this into a simple API or cmdline tool

● By using sentence-transformers and other free
resources you can save costs
– vs. using an expensive commercial API to index the data

● If your system consists of multiple repositories, this tool can
give you answers of system-level scope

RAGtime with Postgres: AI power with pgvector and Retrieval-Augmented Generation

FOSSY 2025
Portland State University, 2025-08-01

Application-side (ii)
● You can send your augmented prompt to an external LLM API

– Cost ($$$)
– Stability (this server is overloaded...)
– Reliability (will the model be the same tomorrow?)

● You can run Ollama locally and run your LLM yourself
– Best for information security, cost
– I would use codellama:7b-instruct for my chatbot
– Capabilities may not be on par with commercial offerings

RAGtime with Postgres: AI power with pgvector and Retrieval-Augmented Generation

FOSSY 2025
Portland State University, 2025-08-01

Database-side
● I used IVFFlat

– Faster index creation
● HNSW

– Can give more accurate results
– Performance: faster queries
– Index build time is slower

FOSSY 2025
Portland State University, 2025-08-01

Caveats

RAGtime with Postgres: AI power with pgvector and Retrieval-Augmented Generation

FOSSY 2025
Portland State University, 2025-08-01

Caveats (i)
● LLMs can generate misinformation even when pulling

from factually correct sources
– If they misinterpret the context

● “Open source” models
– Where’s the training data?

RAGtime with Postgres: AI power with pgvector and Retrieval-Augmented Generation

FOSSY 2025

Caveats (ii)

RAGtime with Postgres: AI power with pgvector and Retrieval-Augmented Generation

FOSSY 2025
Portland State University, 2025-08-01

● YouTube: https://youtube.com/JimmyAngelakos
● Mastodon: https://fosstodon.org/@vyruss
● BlueSky: https://bsky.app/profile/vyruss.org
● LinkedIn: https://linkedin.com/in/vyruss

Find me on socials

https://youtube.com/JimmyAngelakos
https://fosstodon.org/@vyruss
https://bsky.app/profile/vyruss.org
https://linkedin.com/in/vyruss

RAGtime with Postgres: AI power with pgvector and Retrieval-Augmented Generation

FOSSY 2025

45% off everything!
Code: jafossy45

Thank you

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

