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About me

● Systems & Database Architect
● Based in Edinburgh, Scotland
● Open Source user & contributor (25+ years)
● PostgreSQL exclusively (16+ years)
● Author, PostgreSQL Mistakes and How to Avoid Them
● Co-author, PostgreSQL 16 Administration Cookbook
● pg_statviz PostgreSQL extension

https://mng.bz/vKd4
https://www.amazon.com/PostgreSQL-Administration-Cookbook-real-world-challenges/dp/1835460585
https://github.com/vyruss/pg_statviz
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Motivation, etc.
● Customer wanted application users to not see

each other’s data
● Duh? But:
● Customer was used to application being badly coded
● REST URLs like /user/1234/data
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What is Row-Level Security (RLS)?
● Fine-grained control over 

which rows are visible to 
which users

● Provides additional 
security beyond table or 
column level privileges

● It’s a type of Access 
Control List (ACL)

● Saves you application-
side security filtering
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When would you use RLS?
● Confidential data

– Restrict access to 
sensitive records

● Role / department 
separation
– e.g. only HR sees HR-

related content

● Multi-tenant systems
– Separate data for each 

customer/tenant in the 
same DB

● Finer-grained visibility 
control (row vs table)
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How does RLS work?                                      (i)
● From user perspective, rows they’re not allowed to see 

“don’t exist”
● Key concepts:

– Policy
● Conditions for reading/modifying rows

– Security barrier
● Query optimizer doesn’t inline/restructure query

to bypass RLS
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How does RLS work?                                     (ii)
● It’s exactly an ACL
● Internally, you are effectively adding WHERE conditions 

to the query
● Permissive / Restrictive policies

– Permissive: policy_A OR policy_B (default)
– Restrictive: policy_C AND policy_D
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How does RLS work?                                    (iii)
● pg_catalog.pg_policy

– polrelid: The table to which the policy applies
– polcmd: The command for which the policy is: 
SELECT, INSERT, UPDATE, DELETE, all

– polpermissive: Policy permissive (true) or 
restrictive

– polroles: Array of roles that the policy applies to
– polqual: USING clause
– polwithcheck: WITH CHECK clause
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How do I use RLS?                                          (i)
ALTER TABLE customers
ENABLE ROW LEVEL SECURITY;

● Remember: deny by default
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How do I use RLS?                                         (ii)
CREATE POLICY custpolicy
ON customer
FOR ALL
TO public
USING customer_user = CURRENT_USER;
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How do I use RLS?                                        (iii)
SELECT * FROM customer;
⬇

SELECT * FROM customer
(WHERE customer_user = CURRENT_USER);
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Okay, but what about your clickbait title?
● It does suck ● And RLS sucks too

● Why?
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What’s wrong with how RLS works?   (i)
● It assumes that your application works a certain way
● People generally don’t have data separated by 

database user that accesses it
● You don’t want Postgres to manage your application 

users
– Roles system has global scope
– Can’t store user attributes/preferences
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What’s wrong with how RLS works?  (ii)
● Your application connects to DB using a single user

– Makes auditing difficult
– Changing this would require a significant rewrite

● Aligning application users and DB roles is tedious
– Spaghetti of GRANTs
– You have to keep them in sync too
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What can we do?
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A possible solution   (i)
● SET variables and use those in the POLICY

CREATE POLICY transpolicy
ON transaction FOR ALL TO public
USING 
    (tenant = current_setting('app.tenant'));

SET app.tenant = 'Megacorp';
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A possible solution  (ii)
● Feeling paranoid? 
CREATE POLICY transpolicy
ON transaction FOR ALL TO public
USING (tenant =
    current_setting('app.tenant')::uuid);

SET app.tenant = 
    '465f2480-bbca-4eb0-8dd5-c6310b724e37';
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A possible solution (iii)
● Depending on whether you use connection pooling:
SET LOCAL app.tenant = 
    '465f2480-bbca-4eb0-8dd5-c6310b724e37';
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Want to take this a step further?
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ACL + RBAC     (i)
● Explicit Access Control List 

and Role-Based Access Control
● Add an ACL column to the table:
ALTER TABLE transaction
ADD acl uuid[] NOT NULL DEFAULT '{}'::uuid[]

● ARRAY of uuid (if we use UUIDs for role identifiers)
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ACL + RBAC    (ii)
● SET the roles that are granted access in the ACL

SET app.tenant_roles = 
    '{dda71d2d-67d8-4f00-b877-41ab442e62ea,
      039746dc-48a1-4e2a-b765-968f689ac84f}';
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ACL + RBAC   (iii)
● What does the RLS policy look like?

CREATE POLICY transrolepolicy
ON transaction FOR ALL TO public
USING (acl && 
current_setting('app.tenant_roles')::uuid[]
= true);

ALTER TABLE transaction
ENABLE ROW LEVEL SECURITY;
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ACL + RBAC   (iv)
● The policy checks if any of the tenant roles are inside the ACL
● RBAC

– Roles can have attributes that define their privileges
– Like Postgres roles, can be thought of as “groups”

(of one or more tenants)
– Can be granted to other roles, and then you have an aggregate 

of the privileges
– Yes, we parallel the PostgreSQL roles system 😂😭



SCaLE 22x
Pasadena, 2025-03-08

Want to dive even deeper?
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How would you protect from application?
● After all, the application can connect to the DB and 

change roles and policies
● You hide direct access to this system from the 

application
● Why?

– You don’t trust your / third party application
● Let’s assume Django app
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Database-side   (i)
CREATE ROLE django;

CREATE TABLE transaction (
  id uuid PRIMARY KEY DEFAULT
      gen_random_uuid(),
  amount numeric,
  created_at timestamptz DEFAULT CURRENT_TIME,
  acl uuid[] NOT NULL DEFAULT '{}'::uuid[]
);
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Database-side  (ii)
● To speed up ACL enforcement, we need an index that 

supports ARRAY operations on it:
CREATE INDEX ON transaction
USING GIN (acl array_ops);
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Database-side (iii)
CREATE TABLE tenant_role (
  role_id uuid PRIMARY KEY,
  role_name text NOT NULL UNIQUE,
  role_description text
);
CREATE TABLE tenant_role_member (
  tenant_id uuid REFERENCES tenant(tenant_id),
  role_id uuid REFERENCES tenant_role(role_id);
);
CREATE INDEX ON tenant_role_member(tenant_id);
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Database-side (iv)
● Remove the ability of DB user django to see inner workings: 

REVOKE ALL ON tenant_role FROM django;

REVOKE ALL ON tenant_role_member FROM django;

REVOKE SELECT ON transaction FROM django;

GRANT SELECT (id, amount, created_at)
ON transaction TO django;
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Database-side  (v)
● Create the policy: 
CREATE POLICY trans_rls ON transaction
USING (acl && 
current_setting('app.tenant_roles')::uuid[]
= true);

ALTER TABLE transaction
ENABLE ROW LEVEL SECURITY;
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Expose RBAC to Django through functions
● create_tenant_role(_role_name text, 
_role_description text) RETURNS uuid
enables creation of tenant roles

● get_tenant_roles(_tenant_id uuid) RETURNS uuid[]
returns the roles that have been assigned to a tenant

● set_tenant_roles(_tenant_id uuid, _roles uuid[])
RETURNS boolean
sets all roles for a tenant
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One more thing...
● For each table, we need an “add role to row acl” function 

and a “remove role from row acl function”
● These can be called e.g. by overriding Django’s .save()
● Important when using SECURITY DEFINER: 
SET search_path = public, pg_temp;
(at the bottom of each function definition)
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"Add role to row ACL" function
CREATE OR REPLACE FUNCTION order_acl_add(_id uuid, _role_id uuid)
RETURNS boolean AS $$
DECLARE _current_roles uuid[]; r uuid;
BEGIN
UPDATE order SET acl = (
    CASE WHEN _role_id = ANY(acl) THEN acl
    ELSE array_append(acl, _role_id) END)
WHERE id = _id;
IF FOUND THEN RETURN true;
ELSE RETURN false;
END IF;
END $$
LANGUAGE plpgsql
SECURITY DEFINER
SET search_path = public, pg_temp; -- IMPORTANT with SECURITY DEFINER
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Finally, a few potential RLS catches   (i)
● Policies can add overhead to queries

– Especially complex conditions
– Keep policies simple and explicit

● Superuser can bypass all RLS checks
● Table owner can bypass RLS check if
FORCE ROW LEVEL SECURITY is not specified
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Finally, a few potential RLS catches  (ii)
● Set a restrictive DELETE policy

– So that people can’t delete rows they can read but not update
● Make sure you reset variables between sessions

– PgBouncer statement mode won’t work with SET/SET LOCAL
● Ensure WITH (SECURITY BARRIER) is in place

for views
– To stop malicious function overrides with cost 
0.000000000001 etc.
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45% off everything!            29% off at amazon.com
Code: jascale22x                 

Thank you 
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