
Event / Conference name
Location, Date

Row-Level Security sucks.
Can we make it usable?

SCaLE 22x

Jimmy Angelakos

SCaLE 22x
Pasadena, 2025-03-08

About me

● Systems & Database Architect
● Based in Edinburgh, Scotland
● Open Source user & contributor (25+ years)
● PostgreSQL exclusively (16+ years)
● Author, PostgreSQL Mistakes and How to Avoid Them
● Co-author, PostgreSQL 16 Administration Cookbook
● pg_statviz PostgreSQL extension

https://mng.bz/vKd4
https://www.amazon.com/PostgreSQL-Administration-Cookbook-real-world-challenges/dp/1835460585
https://github.com/vyruss/pg_statviz

Row-Level Security sucks. Can we make it usable?

SCaLE 22x
Pasadena, 2025-03-08

Contents

● What is RLS?
● When to use it
● How it works
● How to use it

● What’s wrong with it
● What to do about it
● More things to try

Row-Level Security sucks. Can we make it usable?

SCaLE 22x
Pasadena, 2025-03-08

Motivation, etc.
● Customer wanted application users to not see

each other’s data
● Duh? But:
● Customer was used to application being badly coded
● REST URLs like /user/1234/data

Row-Level Security sucks. Can we make it usable?

SCaLE 22x
Pasadena, 2025-03-08

What is Row-Level Security (RLS)?
● Fine-grained control over

which rows are visible to
which users

● Provides additional
security beyond table or
column level privileges

● It’s a type of Access
Control List (ACL)

● Saves you application-
side security filtering

Row-Level Security sucks. Can we make it usable?

SCaLE 22x
Pasadena, 2025-03-08

When would you use RLS?
● Confidential data

– Restrict access to
sensitive records

● Role / department
separation
– e.g. only HR sees HR-

related content

● Multi-tenant systems
– Separate data for each

customer/tenant in the
same DB

● Finer-grained visibility
control (row vs table)

Row-Level Security sucks. Can we make it usable?

SCaLE 22x
Pasadena, 2025-03-08

How does RLS work? (i)
● From user perspective, rows they’re not allowed to see

“don’t exist”
● Key concepts:

– Policy
● Conditions for reading/modifying rows

– Security barrier
● Query optimizer doesn’t inline/restructure query

to bypass RLS

Row-Level Security sucks. Can we make it usable?

SCaLE 22x
Pasadena, 2025-03-08

How does RLS work? (ii)
● It’s exactly an ACL
● Internally, you are effectively adding WHERE conditions

to the query
● Permissive / Restrictive policies

– Permissive: policy_A OR policy_B (default)
– Restrictive: policy_C AND policy_D

Row-Level Security sucks. Can we make it usable?

SCaLE 22x
Pasadena, 2025-03-08

How does RLS work? (iii)
● pg_catalog.pg_policy

– polrelid: The table to which the policy applies
– polcmd: The command for which the policy is:
SELECT, INSERT, UPDATE, DELETE, all

– polpermissive: Policy permissive (true) or
restrictive

– polroles: Array of roles that the policy applies to
– polqual: USING clause
– polwithcheck: WITH CHECK clause

Row-Level Security sucks. Can we make it usable?

SCaLE 22x
Pasadena, 2025-03-08

How do I use RLS? (i)
ALTER TABLE customers
ENABLE ROW LEVEL SECURITY;

● Remember: deny by default

Row-Level Security sucks. Can we make it usable?

SCaLE 22x
Pasadena, 2025-03-08

How do I use RLS? (ii)
CREATE POLICY custpolicy
ON customer
FOR ALL
TO public
USING customer_user = CURRENT_USER;

Row-Level Security sucks. Can we make it usable?

SCaLE 22x
Pasadena, 2025-03-08

How do I use RLS? (iii)
SELECT * FROM customer;
⬇

SELECT * FROM customer
(WHERE customer_user = CURRENT_USER);

Row-Level Security sucks. Can we make it usable?

SCaLE 22x
Pasadena, 2025-03-08

Okay, but what about your clickbait title?
● It does suck ● And RLS sucks too

● Why?

Row-Level Security sucks. Can we make it usable?

SCaLE 22x
Pasadena, 2025-03-08

What’s wrong with how RLS works? (i)
● It assumes that your application works a certain way
● People generally don’t have data separated by

database user that accesses it
● You don’t want Postgres to manage your application

users
– Roles system has global scope
– Can’t store user attributes/preferences

Row-Level Security sucks. Can we make it usable?

SCaLE 22x
Pasadena, 2025-03-08

What’s wrong with how RLS works? (ii)
● Your application connects to DB using a single user

– Makes auditing difficult
– Changing this would require a significant rewrite

● Aligning application users and DB roles is tedious
– Spaghetti of GRANTs
– You have to keep them in sync too

Row-Level Security sucks. Can we make it usable?

SCaLE 22x
Pasadena, 2025-03-08

What can we do?

Row-Level Security sucks. Can we make it usable?

SCaLE 22x
Pasadena, 2025-03-08

A possible solution (i)
● SET variables and use those in the POLICY

CREATE POLICY transpolicy
ON transaction FOR ALL TO public
USING
 (tenant = current_setting('app.tenant'));

SET app.tenant = 'Megacorp';

Row-Level Security sucks. Can we make it usable?

SCaLE 22x
Pasadena, 2025-03-08

A possible solution (ii)
● Feeling paranoid?
CREATE POLICY transpolicy
ON transaction FOR ALL TO public
USING (tenant =
 current_setting('app.tenant')::uuid);

SET app.tenant =
 '465f2480-bbca-4eb0-8dd5-c6310b724e37';

Row-Level Security sucks. Can we make it usable?

SCaLE 22x
Pasadena, 2025-03-08

A possible solution (iii)
● Depending on whether you use connection pooling:
SET LOCAL app.tenant =
 '465f2480-bbca-4eb0-8dd5-c6310b724e37';

SCaLE 22x
Pasadena, 2025-03-08

Want to take this a step further?

Row-Level Security sucks. Can we make it usable?

SCaLE 22x
Pasadena, 2025-03-08

ACL + RBAC (i)
● Explicit Access Control List

and Role-Based Access Control
● Add an ACL column to the table:
ALTER TABLE transaction
ADD acl uuid[] NOT NULL DEFAULT '{}'::uuid[]

● ARRAY of uuid (if we use UUIDs for role identifiers)

Row-Level Security sucks. Can we make it usable?

SCaLE 22x
Pasadena, 2025-03-08

ACL + RBAC (ii)
● SET the roles that are granted access in the ACL

SET app.tenant_roles =
 '{dda71d2d-67d8-4f00-b877-41ab442e62ea,
 039746dc-48a1-4e2a-b765-968f689ac84f}';

Row-Level Security sucks. Can we make it usable?

SCaLE 22x
Pasadena, 2025-03-08

ACL + RBAC (iii)
● What does the RLS policy look like?

CREATE POLICY transrolepolicy
ON transaction FOR ALL TO public
USING (acl &&
current_setting('app.tenant_roles')::uuid[]
= true);

ALTER TABLE transaction
ENABLE ROW LEVEL SECURITY;

Row-Level Security sucks. Can we make it usable?

SCaLE 22x
Pasadena, 2025-03-08

ACL + RBAC (iv)
● The policy checks if any of the tenant roles are inside the ACL
● RBAC

– Roles can have attributes that define their privileges
– Like Postgres roles, can be thought of as “groups”

(of one or more tenants)
– Can be granted to other roles, and then you have an aggregate

of the privileges
– Yes, we parallel the PostgreSQL roles system 😂😭

SCaLE 22x
Pasadena, 2025-03-08

Want to dive even deeper?

Row-Level Security sucks. Can we make it usable?

SCaLE 22x
Pasadena, 2025-03-08

How would you protect from application?
● After all, the application can connect to the DB and

change roles and policies
● You hide direct access to this system from the

application
● Why?

– You don’t trust your / third party application
● Let’s assume Django app

Row-Level Security sucks. Can we make it usable?

SCaLE 22x
Pasadena, 2025-03-08

Database-side (i)
CREATE ROLE django;

CREATE TABLE transaction (
 id uuid PRIMARY KEY DEFAULT
 gen_random_uuid(),
 amount numeric,
 created_at timestamptz DEFAULT CURRENT_TIME,
 acl uuid[] NOT NULL DEFAULT '{}'::uuid[]
);

Row-Level Security sucks. Can we make it usable?

SCaLE 22x
Pasadena, 2025-03-08

Database-side (ii)
● To speed up ACL enforcement, we need an index that

supports ARRAY operations on it:
CREATE INDEX ON transaction
USING GIN (acl array_ops);

Row-Level Security sucks. Can we make it usable?

SCaLE 22x
Pasadena, 2025-03-08

Database-side (iii)
CREATE TABLE tenant_role (
 role_id uuid PRIMARY KEY,
 role_name text NOT NULL UNIQUE,
 role_description text
);
CREATE TABLE tenant_role_member (
 tenant_id uuid REFERENCES tenant(tenant_id),
 role_id uuid REFERENCES tenant_role(role_id);
);
CREATE INDEX ON tenant_role_member(tenant_id);

Row-Level Security sucks. Can we make it usable?

SCaLE 22x
Pasadena, 2025-03-08

Database-side (iv)
● Remove the ability of DB user django to see inner workings:

REVOKE ALL ON tenant_role FROM django;

REVOKE ALL ON tenant_role_member FROM django;

REVOKE SELECT ON transaction FROM django;

GRANT SELECT (id, amount, created_at)
ON transaction TO django;

Row-Level Security sucks. Can we make it usable?

SCaLE 22x
Pasadena, 2025-03-08

Database-side (v)
● Create the policy:
CREATE POLICY trans_rls ON transaction
USING (acl &&
current_setting('app.tenant_roles')::uuid[]
= true);

ALTER TABLE transaction
ENABLE ROW LEVEL SECURITY;

Row-Level Security sucks. Can we make it usable?

SCaLE 22x
Pasadena, 2025-03-08

Expose RBAC to Django through functions
● create_tenant_role(_role_name text,
_role_description text) RETURNS uuid
enables creation of tenant roles

● get_tenant_roles(_tenant_id uuid) RETURNS uuid[]
returns the roles that have been assigned to a tenant

● set_tenant_roles(_tenant_id uuid, _roles uuid[])
RETURNS boolean
sets all roles for a tenant

Row-Level Security sucks. Can we make it usable?

SCaLE 22x
Pasadena, 2025-03-08

One more thing...
● For each table, we need an “add role to row acl” function

and a “remove role from row acl function”
● These can be called e.g. by overriding Django’s .save()
● Important when using SECURITY DEFINER:
SET search_path = public, pg_temp;
(at the bottom of each function definition)

Row-Level Security sucks. Can we make it usable?

SCaLE 22x
Pasadena, 2025-03-08

"Add role to row ACL" function
CREATE OR REPLACE FUNCTION order_acl_add(_id uuid, _role_id uuid)
RETURNS boolean AS $$
DECLARE _current_roles uuid[]; r uuid;
BEGIN
UPDATE order SET acl = (
 CASE WHEN _role_id = ANY(acl) THEN acl
 ELSE array_append(acl, _role_id) END)
WHERE id = _id;
IF FOUND THEN RETURN true;
ELSE RETURN false;
END IF;
END $$
LANGUAGE plpgsql
SECURITY DEFINER
SET search_path = public, pg_temp; -- IMPORTANT with SECURITY DEFINER

Row-Level Security sucks. Can we make it usable?

SCaLE 22x
Pasadena, 2025-03-08

Finally, a few potential RLS catches (i)
● Policies can add overhead to queries

– Especially complex conditions
– Keep policies simple and explicit

● Superuser can bypass all RLS checks
● Table owner can bypass RLS check if
FORCE ROW LEVEL SECURITY is not specified

Row-Level Security sucks. Can we make it usable?

SCaLE 22x
Pasadena, 2025-03-08

Finally, a few potential RLS catches (ii)
● Set a restrictive DELETE policy

– So that people can’t delete rows they can read but not update
● Make sure you reset variables between sessions

– PgBouncer statement mode won’t work with SET/SET LOCAL
● Ensure WITH (SECURITY BARRIER) is in place

for views
– To stop malicious function overrides with cost
0.000000000001 etc.

Row-Level Security sucks. Can we make it usable?

SCaLE 22x
Pasadena, 2025-03-08

45% off everything! 29% off at amazon.com
Code: jascale22x

Thank you

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

