
pg_statviz

Jimmy Angelakos Extension Ecosystem Summit
Senior Principal Engineer 2024-10-22
Deriv

A minimalist extension and utility pair
for time series analysis and visualization
of PostgreSQL internal statistics

 pg_statviz 2 Extension Ecosystem Summit 2024-10-22

PostgreSQL internal statistics
● The Cumulative Statistics System (FKA Statistics

Collector)
– Postgres subsystem that collects info about system

activity
● Dynamic statistics (right now)
● Cumulative statistics, but can be reset
● Table/index information on row & disk block levels
● This info can be reported via views

https://www.postgresql.org/docs/current/monitoring-stats.html

 pg_statviz 3 Extension Ecosystem Summit 2024-10-22

Motivation i
● Why?

– Track PostgreSQL performance over time and
potentially perform tuning or troubleshooting

● Yes, but why?
– So that people can understand their system

better at a glance

 pg_statviz 4 Extension Ecosystem Summit 2024-10-22

Motivation ii
● Working with customers

– Who often have no idea how their database
is performing

– Or why it’s not working well
● Their monitoring tools don’t give them insights

 pg_statviz 5 Extension Ecosystem Summit 2024-10-22

How?
● Created for:

– Snapshotting cumulative and dynamic statistics
– Performing time series analysis on them

● Utility can produce visualizations for selected time
ranges on the stored stats snapshots

 pg_statviz 6 Extension Ecosystem Summit 2024-10-22

Design Philosophy i
● K.I.S.S. and UNIX philosophies
● Tool aims to be:

– Modular
– Minimal
– Unobtrusive

● Does only what it's meant for: create snapshots of
PostgreSQL statistics for visualization and analysis.

https://en.wikipedia.org/wiki/KISS_principle
https://en.wikipedia.org/wiki/Unix_philosophy

 pg_statviz 7 Extension Ecosystem Summit 2024-10-22

Design Philosophy ii
● Not for live monitoring displays

– But one could...
● Open schema, clearly defined

– Data easily exportable
● No built-in scheduler
● No built-in data retention policy mechanism

 pg_statviz 8 Extension Ecosystem Summit 2024-10-22

Design
● Components

– PostgreSQL extension
– Python utility for retrieving stored snapshots &

creating simple visualizations using
Matplotlib

● Nothing to put in shared_preload_libraries
● No need to restart Postgres

https://github.com/matplotlib/matplotlib

 pg_statviz 9 Extension Ecosystem Summit 2024-10-22

Usage i
● Extension can be used by superusers, or any user

that has pg_monitor role privileges
● To take a snapshot, e.g. from psql:

SELECT
pgstatviz.snapshot();

 pg_statviz 10 Extension Ecosystem Summit 2024-10-22

 pg_statviz 11 Extension Ecosystem Summit 2024-10-22

Announcing pg_statviz

 pg_statviz 12 Extension Ecosystem Summit 2024-10-22

Announcing pg_statviz

 pg_statviz 13 Extension Ecosystem Summit 2024-10-22

Announcing pg_statviz

 pg_statviz 14 Extension Ecosystem Summit 2024-10-22

Announcing pg_statviz

 pg_statviz 15 Extension Ecosystem Summit 2024-10-22

Announcing pg_statviz

 pg_statviz 16 Extension Ecosystem Summit 2024-10-22

Announcing pg_statviz

 pg_statviz 17 Extension Ecosystem Summit 2024-10-22

Use cases
● "Black box" database

– Deploy and let the developers wreak havoc
– Identify users/components

● Performance troubleshooting
● Observe and monitor DB behaviour over a long period

– During a stress test run
– 8 hours (working hours) / 24 hours (complete day cycle)
– A month / years (?)

 pg_statviz 18 Extension Ecosystem Summit 2024-10-22

Extension implementation i

 pg_statviz 19 Extension Ecosystem Summit 2024-10-22

Extension implementation ii

 pg_statviz 20 Extension Ecosystem Summit 2024-10-22

Utility implementation i
● Modular code in Python

 pg_statviz 21 Extension Ecosystem Summit 2024-10-22

Utility implementation ii
● Plotting

 pg_statviz 22 Extension Ecosystem Summit 2024-10-22

The Future
● Code is currently at "beta / testing" maturity
● Needs:

– Additional modules for stats to record
(such as replication)⏳

– More data management/retention functions

 pg_statviz 23 Extension Ecosystem Summit 2024-10-22

Google Summer of Code 👍

 pg_statviz 24 Extension Ecosystem Summit 2024-10-22

Thank you!
● Project page:

https://github.com/vyruss/pg_statviz
● Download:

– PostgreSQL YUM & APT repos
(thanks Devrim, Christoph)

– PGXN (extension)
– PyPI (utility)

https://github.com/vyruss/pg_statviz
https://pgxn.org/dist/pg_statviz/
https://pypi.org/project/pg_statviz/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

2022-10-26

PostgreSQL Community Panel

Upgradability

	 pg_statviz											 Extension Ecosystem Summit 2024-10-22

ﬂ Google Summer of Code

Program: 2023

Timeline Projects

statviz

Showing 1results for the search term "statviz"

All times in Europe/London timezone.

CONTRIBUTOR PROJECT ORGANIZATION
Rajiv Harlalka ~ pg_statvi: PostgreSQL
Time Serie...

Members

ASSIGNED EVALUATIONS TASK 1

MENTORS

Jimmy
Angelakos,
Pavlo (+1)

Passed /
Passed

Final Evaluation

Ready to view

Deadline:
Sep 04,2023 7:00 F

__Llicense__ = "PostgreSQL License"

import getpass
argh.decorators import arg

from
from
from
from
from
from
from
from
from
from
from
from
from

pg_statviz.
pg_statviz.
pg_statviz.
pg_statviz.
pg_statviz.
pg_statviz.
pg_statviz.
pg_statviz.
pg_statviz.
pg_statviz.
pg_statviz.
pg_statviz.

modules
modules
modules
modules

modules
modules
modules
modules
modules

.buf dimport buf
.cache import cache
.checkp import checkp
.conn {import conn
modules.

o import io

.lock import lock
.tuple import tuple
.wait dimport wait
.wal import wal
.xact import xact

libs.dbconn import dbconn
libs.info import getinfo

R pg_statviz - /var/run/postgresql:5432

\/ X /Z Tuple read rate
\,-\\J/, p i
—e— returned

35000000 fetched |

I
g
8
8
8
8
8

20000000

15000000

Avg. tuples per minute

10000000

5000000

04

Tuple write rate

T
30000 —e— inserted |
—o— updated
—o— deleted

25000 '

20000 ‘i' "

15000

Avg. tuples per minute

10000 . |\’

T
\ 1 T uwml

w m%;;“wuu Wit AR

o N L
b“f'ﬁi n"flﬁﬁ b“fwg b“fwg “‘ﬂe“b‘

5000 .‘- "_,U i

o\

Ab
° 5
oY

N
Timestamp

psql (15.1 (Ubuntu 15.1-1.pgdg22.04+1))
Type "help" for help.

faf=> SELECT pgstatviz.snapshot();

NOTICE: created pg_statviz snapshot
snapshot

2023-04-20 14:15:14.5869+01

(1 row)

faf=>

pg_statviz - /var/run/postgresql:5432

No. of connections

—— T
—o—
Connection/user count —— Ml
——

\J A A \J A\ o
o

p g 2o

20 s
& &P &P & o

o 2

o 2

o 2

o 2

N
Timestamp

)

Avg. write rate in MB/s

statviz - /var/run/postgresql:5432 o total
\/\ /) P9 postgresq —e— checkpoints
.\‘ Fed Buffer write rate —e— bgwriter
—e— backends
20
15
10
5
) | b
AT
ol A IR
AL b Ao N\ 20 70 (N o ()
BQ"’L% BQ"’L% BQ"’L% BQ"’L% BQ"’L% BQ"’L% BQ"’L@ BQ"’L@ BQ"’L@

Timestamp

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

Plot buffer rates

plt, fig = plot.setup()

plt.suptitle(f"pg statviz - {info['hostname']}:{port}",
fontweight="semibold")

plt.title("Buffer write rate")

plt.plot_date(tstamps, total, label="total", aa=True,
linestyle='solid')

plt.plot_date(tstamps, checkpoints, label="checkpoints", aa=True,
linestyle='solid')

plt.plot_date(tstamps, bgwriter, label="bgwriter", aa=True,
linestyle='solid')

plt.plot_date(tstamps, backends, label="backends", aa=True,
linestyle='solid')

plt.xlabel("Timestamp", fontweight='semibold')
plt.ylabel("Avg. write rate in MB/s", fontweight='semibold')
fig.legend()
fig.tight_layout()
outfile = f"""{outputdir.rstrip("/") + "/" if outputdir
else ''}pg_statviz_{info['hostname']
.replace("/", "-")}_{port}_buf_rate.png"""
_logger.info(f"Saving {outfile}")
plt.savefig(outfile)

usage: pg_statviz [--help] [--version] [-d DBNAME] [-h HOSTNAME] [-p PORT] [-U USERNAME]
[-W] [-D FROM TO] [-O OUTPUTDIR]
{analyze, buf, cache, checkp, conn, io, lock, tuple,wait,wal, xact}

run all analysis modules

positional arguments:
{analyze, buf, cache, checkp, conn, 10, lock, tuple, wait,wal, xact}

analyze run all analysis modules
buf run buffers written analysis module
cache run cache hit ratio analysis module
checkp run checkpoint analysis module
conn run connection count analysis module
io run 1/0 analysis module
lock run locks analysis module
tuple run tuple count analysis module
wait run wait events analysis module
wal run WAL generation analysis module
xact run transaction count analysis module
options:
--help
--version show program's version number and exit

-d DBNAME, --dbname DBNAME
database name to analyze (default: 'vyruss')
-h HOSTNAME, --host HOSTNAME
database server host or socket directory (default: '/var/run/postgresql')
-p PORT, --port PORT database server port (default: '5432')
-U USERNAME, --username USERNAME
database user name (default: 'vyruss')
W, --password force password prompt (should happen automatically) (default: False)
-D FROM TO, --daterange FROM TO
date range to be analyzed in ISO 8601 format e.g. 2023-01-01T00:002023-01-01T23:59 (default:
-0 OUTPUTDIR, --outputdir OUTPUTDIR
output directory (default:

faf=> \df pgstatviz.*

Schema
pgstatviz
pgstatviz
pgstatviz
pgstatviz
pgstatviz
pgstatviz
pgstatviz
pgstatviz
pgstatviz
pgstatviz

(10 rows)

|
&
|
|
|
|
|
|
|
|
|
|

delete_snapshots
snapshot
snapshot_buf
snapshot_conf
snapshot_conn
snapshot_db
snapshot_io
snapshot_lock
snapshot_wait
snapshot_wal

List of functions

Result data type
void
timestamp with time zone
void
void
void
void
void
void
void
void

&
|
|
|
|
|
|
|
|
|
|

Argument data types

snapshot_tstamp
snapshot_tstamp
snapshot_tstamp
snapshot_tstamp
snapshot_tstamp
snapshot_tstamp
snapshot_tstamp
snapshot_tstamp

timestamp
timestamp
timestamp
timestamp
timestamp
timestamp
timestamp
timestamp

with
with
with
with
with
with
with
with

time
time
time
time
time
time
time
time

zone
zone
zone
zone
zone
zone
zone
zone

—e— e e e e e e e e db —

Lock count (at time of snapshot)

1400

1200

1000

800

600

200

pg_statviz - /var/run/postgresql:5432

Locks

—— AccessSharelLock
—o— RowExclusivelock
—e— Total

A0
1
oY

& *
o

Ab
1
oY

& ©
o

AD
1
oY

?ﬂ(”@
o

Timestamp

b‘?fﬁﬁ

o0
10
oY

3
10
oY

b?flbw

rﬁ[‘\'7\ pg_statviz - /var/run/postgresql:5432 : mt(a'
active
\/- = Connection/status count —o— idle
126 —e— idle in transaction
105
%

75

No. of connections
8

45

0 M&-&d—-——u—u‘w&

N N AN \J \J 20 0 (\ (3 o
o o o
&P &P B

@ @ N

&

o 2

o 2

o 2

o 2

N
Timestamp

Pﬁ\r) pg_statviz - /var/run/postgresql:5432 : Eolrlnr:i;tei
olled bac
\/.U: Transaction rate

35000

30000

25000

20000

transactions per minute

5 15000

Avg.

10000

5000

o\

AN
)2 >
&

g o
o

\®
)2 >
&

&F o7

Y
BQ"’L% N

Timestamp

o

3
s)6
oY

Nl o

Nl

faf=> \dt pgstatviz.=*
List of relations

Schema | Name | Type | Owner
——————————— B it e
pgstatviz | buf | table | postgres
pgstatviz | conf | table | postgres
pgstatviz | conn | table | postgres
pgstatviz | db | table | postgres
pgstatviz | io | table | postgres
pgstatviz | lock | table | postgres
pgstatviz | snapshots | table | postgres
pgstatviz | wait | table | postgres
pgstatviz | wal | table | postgres

(9 rows)

pg_statviz

Jimmy Angelakos					 	 Extension Ecosystem Summit

Senior Principal Engineer				 								 2024-10-22

Deriv

A minimalist extension and utility pair

for time series analysis and visualization

of PostgreSQL internal statistics

PostgreSQL internal statistics

		The Cumulative Statistics System (FKA Statistics Collector)

		Postgres subsystem that collects info about system activity

		Dynamic statistics (right now)

		Cumulative statistics, but can be reset

		Table/index information on row & disk block levels

		This info can be reported via views

Motivation i

		Why?

		Track PostgreSQL performance over time and potentially perform tuning or troubleshooting

		Yes, but why?

		So that people can understand their system better at a glance

Motivation ii

		Working with customers

		Who often have no idea how their database

is performing

		Or why it’s not working well

		Their monitoring tools don’t give them insights

How?

		Created for:

		Snapshotting cumulative and dynamic statistics

		Performing time series analysis on them

		Utility can produce visualizations for selected time ranges on the stored stats snapshots

Design Philosophy i

		K.I.S.S. and UNIX philosophies

		Tool aims to be:

		Modular

		Minimal

		Unobtrusive

		Does only what it's meant for: create snapshots of PostgreSQL statistics for visualization and analysis.

Design Philosophy ii

		Not for live monitoring displays

		But one could...

		Open schema, clearly defined

		Data easily exportable

		No built-in scheduler

		No built-in data retention policy mechanism

Design

		Components

		PostgreSQL extension

		Python utility for retrieving stored snapshots & creating simple visualizations using Matplotlib

		Nothing to put in shared_preload_libraries

		No need to restart Postgres

Usage i

		Extension can be used by superusers, or any user that has pg_monitor role privileges

		To take a snapshot, e.g. from psql:

SELECT

pgstatviz.snapshot();

Schema name is pgstatviz

Schema name is pgstatviz

Announcing pg_statviz

Announcing pg_statviz

Announcing pg_statviz

Announcing pg_statviz

Announcing pg_statviz

Announcing pg_statviz

Use cases

		"Black box" database

		Deploy and let the developers wreak havoc

		Identify users/components

		Performance troubleshooting

		Observe and monitor DB behaviour over a long period

		During a stress test run

		8 hours (working hours) / 24 hours (complete day cycle)

		A month / years (?)

GraphQL I’m looking at you

Extension implementation i

Extension implementation ii

Utility implementation i

		Modular code in Python

Utility implementation ii

		Plotting

The Future

		Code is currently at "beta / testing" maturity

		Needs:

		Additional modules for stats to record

(such as replication)⏳

		More data management/retention functions

Google Summer of Code 👍

Thank you!

		Project page:

https://github.com/vyruss/pg_statviz

		Download:

		PostgreSQL YUM & APT repos

(thanks Devrim, Christoph)

		PGXN (extension)

		PyPI (utility)

pg_statviz

A minimalist extension and utility pair
for time series analysis and visualization
of PostgresQL internal statistics

Jimmy Angelakos t Sumi ,'
r P ” 20241022

