
Event / Conference name
Location, Date

Row-Level Security sucks.
Can we make it usable?

FOSDEM 2025

Jimmy Angelakos

FOSDEM
Brussels, 2025-02-02

About me

● Systems & Database Architect
● Based in Edinburgh, Scotland
● Open Source user & contributor (25+ years)
● PostgreSQL exclusively (16+ years)
● Author, PostgreSQL Mistakes and How to Avoid Them
● Co-author, PostgreSQL 16 Administration Cookbook

● pg_statviz PostgreSQL extension

https://www.manning.com/books/postgresql-mistakes-and-how-to-avoid-them
https://www.packtpub.com/product/postgresql-16-administration-cookbook/9781835460580
https://github.com/vyruss/pg_statviz

Row-Level Security sucks. Can we make it usable?

FOSDEM
Brussels, 2025-02-02

Contents

● What is RLS?
● When to use it
● How it works
● How to use it

● What’s wrong with it
● What to do about it
● More things to try

Row-Level Security sucks. Can we make it usable?

FOSDEM
Brussels, 2025-02-02

Motivation, etc.
● Customer wanted application users to not see

each other’s data
● Duh? But:
● Customer was used to application being badly coded
● REST URLs like /user/1234/data

Row-Level Security sucks. Can we make it usable?

FOSDEM
Brussels, 2025-02-02

What is Row-Level Security (RLS)?
● Fine-grained control over

which rows are visible to
which users

● Provides additional
security beyond table or
column level privileges

● It’s a type of Access
Control List (ACL)

● Saves you application-
side security filtering

Row-Level Security sucks. Can we make it usable?

FOSDEM
Brussels, 2025-02-02

When would you use RLS?
● Confidential data

– Restrict access to
sensitive records

● Role / department
separation
– e.g. only HR sees HR-

related content

● Multi-tenant systems
– Separate data for each

customer/tenant in the
same DB

● Finer-grained visibility
control (row vs table)

Row-Level Security sucks. Can we make it usable?

FOSDEM
Brussels, 2025-02-02

How does RLS work? (i)
● From user perspective, rows they’re not allowed to see

“don’t exist”
● Key concepts:

– Policy
● Conditions for reading/modifying rows

– Security barrier
● Query optimizer doesn’t inline/restructure query

to bypass RLS

Row-Level Security sucks. Can we make it usable?

FOSDEM
Brussels, 2025-02-02

How does RLS work? (ii)
● It’s exactly an ACL
● Internally, you are effectively adding WHERE conditions

to the query
● Permissive / Restrictive policies

– Permissive: policy_A OR policy_B (default)
– Restrictive: policy_C AND policy_D

Row-Level Security sucks. Can we make it usable?

FOSDEM
Brussels, 2025-02-02

How does RLS work? (iii)
● pg_catalog.pg_policy

– polrelid: The table to which the policy applies
– polcmd: The command for which the policy is:
SELECT, INSERT, UPDATE, DELETE, all

– polpermissive: Policy permissive (true) or restrictive
– polroles: Array of roles that the policy applies to
– polqual: USING clause
– polwithcheck: WITH CHECK clause

Row-Level Security sucks. Can we make it usable?

FOSDEM
Brussels, 2025-02-02

How do I use RLS? (i)
ALTER TABLE customers
ENABLE ROW LEVEL SECURITY;

● Remember: deny by default

Row-Level Security sucks. Can we make it usable?

FOSDEM
Brussels, 2025-02-02

How do I use RLS? (ii)
CREATE POLICY custpolicy
ON customer
FOR ALL
TO public
USING customer_user = CURRENT_USER;

Row-Level Security sucks. Can we make it usable?

FOSDEM
Brussels, 2025-02-02

How do I use RLS? (iii)
SELECT * FROM customer;
⬇

SELECT * FROM customer
(WHERE customer_user = CURRENT_USER);

Row-Level Security sucks. Can we make it usable?

FOSDEM
Brussels, 2025-02-02

Okay, but what about your clickbait title?
● It does suck ● And RLS sucks too

● Why?

Row-Level Security sucks. Can we make it usable?

FOSDEM
Brussels, 2025-02-02

What’s wrong with how RLS works? (i)
● It assumes that your application works a certain way
● People generally don’t have data separated by

database user that accesses it
● You don’t want Postgres to manage your application

users
– Roles system has global scope
– Can’t store user attributes/preferences

Row-Level Security sucks. Can we make it usable?

FOSDEM
Brussels, 2025-02-02

What’s wrong with how RLS works? (ii)
● Your application connects to DB using a single user

– Makes auditing difficult
– Changing this would require a significant rewrite

● Aligning application users and DB roles is tedious
– Spaghetti of GRANTs
– You have to keep them in sync too

Row-Level Security sucks. Can we make it usable?

FOSDEM
Brussels, 2025-02-02

What can we do?

Row-Level Security sucks. Can we make it usable?

FOSDEM
Brussels, 2025-02-02

A possible solution (i)
● SET variables and use those in the POLICY
CREATE POLICY transpolicy
ON transaction FOR ALL TO public
USING
 (tenant = current_setting('app.tenant'));
SET app.tenant = 'Megacorp';

Row-Level Security sucks. Can we make it usable?

FOSDEM
Brussels, 2025-02-02

A possible solution (ii)
● Feeling paranoid?

CREATE POLICY transpolicy
ON transaction FOR ALL TO public
USING (tenant =
 current_setting('app.tenant')::uuid);
SET app.tenant =
 '465f2480-bbca-4eb0-8dd5-c6310b724e37';

Row-Level Security sucks. Can we make it usable?

FOSDEM
Brussels, 2025-02-02

A possible solution (iii)
● Depending on whether you use connection pooling:

SET LOCAL app.tenant =
 '465f2480-bbca-4eb0-8dd5-c6310b724e37';

FOSDEM
Brussels, 2025-02-02

Want to take this a step further?

Row-Level Security sucks. Can we make it usable?

FOSDEM
Brussels, 2025-02-02

ACL + RBAC (i)
● Explicit Access Control List

and Role-Based Access Control
● Add an ACL column to the table:

ALTER TABLE transaction
ADD acl uuid[] NOT NULL DEFAULT '{}'::uuid[]

● ARRAY of uuid (if we use UUIDs for role identifiers)

Row-Level Security sucks. Can we make it usable?

FOSDEM
Brussels, 2025-02-02

ACL + RBAC (ii)
● SET the roles that are granted access in the ACL

SET app.tenant_roles =
 '{dda71d2d-67d8-4f00-b877-41ab442e62ea,
 039746dc-48a1-4e2a-b765-968f689ac84f}';

Row-Level Security sucks. Can we make it usable?

FOSDEM
Brussels, 2025-02-02

ACL + RBAC (iii)
● What does the RLS policy look like?

CREATE POLICY transrolepolicy
ON transaction FOR ALL TO public
USING (acl &&
current_setting('app.tenant_roles')::uuid[]
= true);
ALTER TABLE transaction
ENABLE ROW LEVEL SECURITY;

Row-Level Security sucks. Can we make it usable?

FOSDEM
Brussels, 2025-02-02

ACL + RBAC (iv)
● The policy checks if any of the tenant roles are inside the ACL
● RBAC

– Roles can have attributes that define their privileges
– Like Postgres roles, can be thought of as “groups”

(of one or more tenants)
– Can be granted to other roles, and then you have an

aggregate of the privileges
– Yes, we parallel the PostgreSQL roles system 😂😭

FOSDEM
Brussels, 2025-02-02

Want to dive even deeper?

Row-Level Security sucks. Can we make it usable?

FOSDEM
Brussels, 2025-02-02

How would you protect from application?
● After all, the application can connect to the DB and

change roles and policies
● You hide direct access to this system from the

application
● Why?

– You don’t trust your / third party application
● Let’s assume Django app

Row-Level Security sucks. Can we make it usable?

FOSDEM
Brussels, 2025-02-02

Database-side (i)
CREATE ROLE django;
CREATE TABLE transaction (
 id uuid PRIMARY KEY DEFAULT
 gen_random_uuid(),
 amount numeric,
 created_at timestamptz DEFAULT CURRENT_TIME,
 acl uuid[] NOT NULL DEFAULT '{}'::uuid[]
);

Row-Level Security sucks. Can we make it usable?

FOSDEM
Brussels, 2025-02-02

Database-side (ii)
● To speed up ACL enforcement, we need an index that

supports ARRAY operations on it:

CREATE INDEX ON transaction
USING GIN (acl array_ops);

Row-Level Security sucks. Can we make it usable?

FOSDEM
Brussels, 2025-02-02

Database-side (iii)
CREATE TABLE tenant_role (
 role_id uuid PRIMARY KEY,
 role_name text NOT NULL UNIQUE,
 role_description text
);
CREATE TABLE tenant_role_member (
 tenant_id uuid REFERENCES tenant(tenant_id),
 role_id uuid REFERENCES tenant_role(role_id);
);
CREATE INDEX ON tenant_role_member(tenant_id);

Row-Level Security sucks. Can we make it usable?

FOSDEM
Brussels, 2025-02-02

Database-side (iv)
● Remove the ability of DB user django to see inner workings:

REVOKE ALL ON tenant_role FROM django;
REVOKE ALL ON tenant_role_member FROM django;
REVOKE SELECT ON transaction FROM django;
GRANT SELECT (id, amount, created_at)
ON transaction TO django;

Row-Level Security sucks. Can we make it usable?

FOSDEM
Brussels, 2025-02-02

Database-side (v)
● Create the policy:

CREATE POLICY trans_rls ON transaction
USING (acl &&
current_setting('app.tenant_roles')::uuid[]
= true);
ALTER TABLE transaction
ENABLE ROW LEVEL SECURITY;

Row-Level Security sucks. Can we make it usable?

FOSDEM
Brussels, 2025-02-02

Expose RBAC to Django through functions
● create_tenant_role(_role_name text,
_role_description text) RETURNS uuid
enables creation of tenant roles

● get_tenant_roles(_tenant_id uuid) RETURNS uuid[]
returns the roles that have been assigned to a tenant

● set_tenant_roles(_tenant_id uuid, _roles uuid[])
RETURNS boolean
sets all roles for a tenant

Row-Level Security sucks. Can we make it usable?

FOSDEM
Brussels, 2025-02-02

One more thing...
● For each table, we need an “add role to row acl” function

and a “remove role from row acl function”
● These can be called e.g. by overriding Django’s .save()
● Important when using SECURITY DEFINER:
SET search_path = public, pg_temp;
(at the bottom of each function definition)

Row-Level Security sucks. Can we make it usable?

FOSDEM
Brussels, 2025-02-02

Finally, a few potential RLS catches (i)
● Policies can add overhead to queries

– Especially complex conditions
– Keep policies simple and explicit

● Superuser can bypass all RLS checks
● Table owner can bypass RLS check if
FORCE ROW LEVEL SECURITY is not specified

Row-Level Security sucks. Can we make it usable?

FOSDEM
Brussels, 2025-02-02

Finally, a few potential RLS catches (ii)
● Set a restrictive DELETE policy

– So that people can’t delete rows they can read but not update
● Make sure you reset variables between sessions

– PgBouncer statement mode won’t work with SET/SET LOCAL
● Ensure WITH (SECURITY BARRIER) is in place

for views
– To stop malicious function overrides with cost
0.000000000001 etc.

Row-Level Security sucks. Can we make it usable?

FOSDEM
Brussels, 2025-02-02

35% off! 29% off at amazon.com,
Code: au35ang 21% off at amazon.com.be

Thank you

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

Row-Level Security sucks.

Can we make it usable?

FOSDEM 2025

Jimmy Angelakos

About me

		Systems & Database Architect

		Based in Edinburgh, Scotland

		Open Source user & contributor (25+ years)

		PostgreSQL exclusively (16+ years)

		Author, PostgreSQL Mistakes and How to Avoid Them

		Co-author, PostgreSQL 16 Administration Cookbook

		pg_statviz PostgreSQL extension

Contents

		What is RLS?

		When to use it

		How it works

		How to use it

		What’s wrong with it

		What to do about it

		More things to try

Motivation, etc.

		Customer wanted application users to not see

each other’s data

		Duh? But:

		Customer was used to application being badly coded

		REST URLs like /user/1234/data

What is Row-Level Security (RLS)?

		Fine-grained control over which rows are visible to which users

		Provides additional security beyond table or column level privileges

		It’s a type of Access Control List (ACL)

		Saves you application-side security filtering

When would you use RLS?

		Confidential data

		Restrict access to sensitive records

		Role / department separation

		e.g. only HR sees HR-related content

		Multi-tenant systems

		Separate data for each customer/tenant in the same DB

		Finer-grained visibility control (row vs table)

How does RLS work? (i)

		From user perspective, rows they’re not allowed to see “don’t exist”

		Key concepts:

		Policy

		Conditions for reading/modifying rows

		Security barrier

		Query optimizer doesn’t inline/restructure query

to bypass RLS

How does RLS work? (ii)

		It’s exactly an ACL

		Internally, you are effectively adding WHERE conditions to the query

		Permissive / Restrictive policies

		Permissive: policy_A OR policy_B (default)

		Restrictive: policy_C AND policy_D

How does RLS work? (iii)

		pg_catalog.pg_policy

		polrelid: The table to which the policy applies

		polcmd: The command for which the policy is:

SELECT, INSERT, UPDATE, DELETE, all

		polpermissive: Policy permissive (true) or restrictive

		polroles: Array of roles that the policy applies to

		polqual: USING clause

		polwithcheck: WITH CHECK clause

How do I use RLS? (i)

ALTER TABLE customers

ENABLE ROW LEVEL SECURITY;

		Remember: deny by default

How do I use RLS? (ii)

CREATE POLICY custpolicy

ON customer

FOR ALL

TO public

USING customer_user = CURRENT_USER;

How do I use RLS? (iii)

SELECT * FROM customer;

⬇

SELECT * FROM customer

(WHERE customer_user = CURRENT_USER);

Okay, but what about your clickbait title?

		It does suck

		And RLS sucks too

		Why?

What’s wrong with how RLS works?			 (i)

		It assumes that your application works a certain way

		People generally don’t have data separated by database user that accesses it

		You don’t want Postgres to manage your application users

		Roles system has global scope

		Can’t store user attributes/preferences

What’s wrong with how RLS works?			 (ii)

		Your application connects to DB using a single user

		Makes auditing difficult

		Changing this would require a significant rewrite

		Aligning application users and DB roles is tedious

		Spaghetti of GRANTs

		You have to keep them in sync too

What can we do?

A possible solution										 (i)

		SET variables and use those in the POLICY

CREATE POLICY transpolicy

ON transaction FOR ALL TO public

USING

 (tenant = current_setting('app.tenant'));

SET app.tenant = 'Megacorp';

A possible solution										 (ii)

		Feeling paranoid?

CREATE POLICY transpolicy

ON transaction FOR ALL TO public

USING (tenant =

 current_setting('app.tenant')::uuid);

SET app.tenant =

 '465f2480-bbca-4eb0-8dd5-c6310b724e37';

A possible solution										(iii)

		Depending on whether you use connection pooling:

SET LOCAL app.tenant =

 '465f2480-bbca-4eb0-8dd5-c6310b724e37';

Want to take this a step further?

ACL + RBAC										 			 (i)

		Explicit Access Control List

and Role-Based Access Control

		Add an ACL column to the table:

ALTER TABLE transaction

ADD acl uuid[] NOT NULL DEFAULT '{}'::uuid[]

		ARRAY of uuid (if we use UUIDs for role identifiers)

ACL + RBAC										 			 (ii)

		SET the roles that are granted access in the ACL

SET app.tenant_roles =

 '{dda71d2d-67d8-4f00-b877-41ab442e62ea,

 039746dc-48a1-4e2a-b765-968f689ac84f}';

ACL + RBAC										 			(iii)

		What does the RLS policy look like?

CREATE POLICY transrolepolicy

ON transaction FOR ALL TO public

USING (acl && current_setting('app.tenant_roles')::uuid[]

= true);

ALTER TABLE transaction

ENABLE ROW LEVEL SECURITY;

ACL + RBAC										 			(iv)

		The policy checks if any of the tenant roles are inside the ACL

		RBAC

		Roles can have attributes that define their privileges

		Like Postgres roles, can be thought of as “groups”

(of one or more tenants)

		Can be granted to other roles, and then you have an aggregate of the privileges

		Yes, we parallel the PostgreSQL roles system 😂😭

Want to dive even deeper?

How would you protect from application?

		After all, the application can connect to the DB and change roles and policies

		You hide direct access to this system from the application

		Why?

		You don’t trust your / third party application

		Let’s assume Django app

Database-side												 (i)

CREATE ROLE django;

CREATE TABLE transaction (

 id uuid PRIMARY KEY DEFAULT

 gen_random_uuid(),

 amount numeric,

 created_at timestamptz DEFAULT CURRENT_TIME,

 acl uuid[] NOT NULL DEFAULT '{}'::uuid[]

);

Database-side												 (ii)

		To speed up ACL enforcement, we need an index that supports ARRAY operations on it:

CREATE INDEX ON transaction

USING GIN (acl array_ops);

Database-side												(iii)

CREATE TABLE tenant_role (

 role_id uuid PRIMARY KEY,

 role_name text NOT NULL UNIQUE,

 role_description text

);

CREATE TABLE tenant_role_member (

 tenant_id uuid REFERENCES tenant(tenant_id),

 role_id uuid REFERENCES tenant_role(role_id);

);

CREATE INDEX ON tenant_role_member(tenant_id);

Database-side												(iv)

		Remove the ability of DB user django to see inner workings:

REVOKE ALL ON tenant_role FROM django;

REVOKE ALL ON tenant_role_member FROM django;

REVOKE SELECT ON transaction FROM django;

GRANT SELECT (id, amount, created_at)

ON transaction TO django;

Database-side												 (v)

		Create the policy:

CREATE POLICY trans_rls ON transaction

USING (acl && current_setting('app.tenant_roles')::uuid[]

= true);

ALTER TABLE transaction

ENABLE ROW LEVEL SECURITY;

Expose RBAC to Django through functions

		create_tenant_role(_role_name text, _role_description text) RETURNS uuid

enables creation of tenant roles

		get_tenant_roles(_tenant_id uuid) RETURNS uuid[]

returns the roles that have been assigned to a tenant

		set_tenant_roles(_tenant_id uuid, _roles uuid[])

RETURNS boolean

sets all roles for a tenant

One more thing...

		For each table, we need an “add role to row acl” function and a “remove role from row acl function”

		These can be called e.g. by overriding Django’s .save()

		Important when using SECURITY DEFINER:

SET search_path = public, pg_temp;

(at the bottom of each function definition)

Finally, a few potential RLS catches			 (i)

		Policies can add overhead to queries

		Especially complex conditions

		Keep policies simple and explicit

		Superuser can bypass all RLS checks

		Table owner can bypass RLS check if

FORCE ROW LEVEL SECURITY is not specified

Finally, a few potential RLS catches			 (ii)

		Set a restrictive DELETE policy

		So that people can’t delete rows they can read but not update

		Make sure you reset variables between sessions

		PgBouncer statement mode won’t work with SET/SET LOCAL

		Ensure WITH (SECURITY BARRIER) is in place

for views

		To stop malicious function overrides with cost 0.000000000001 etc.

		35% off!				 		 	 			 	 	29% off at amazon.com,

Code: au35ang		 	 	 				 	 	21% off at amazon.com.be

Thank you

Row-Level Security sucks. Can we make it usable?

FOSDEM

Brussels, 2025-02-02

		Click to edit the outline text format

		Second Outline Level

		Third Outline Level

		Fourth Outline Level

		Fifth Outline Level

		Sixth Outline Level

		Seventh Outline Level

Row-Level Security sucks. Can we make it usable?

FOSDEM

Brussels, 2025-02-02

		Click to edit the outline text format

		Second Outline Level

		Third Outline Level

		Fourth Outline Level

		Fifth Outline Level

		Sixth Outline Level

		Seventh Outline Level

Row-Level Security sucks. Can we make it usable?

FOSDEM

Brussels, 2025-02-02

FOSDEM

Brussels, 2025-02-02

		Click to edit the outline text format

		Second Outline Level

		Third Outline Level

		Fourth Outline Level

		Fifth Outline Level

		Sixth Outline Level

		Seventh Outline Level

Row-Level Security sucks. Can we make it usable?

FOSDEM

Brussels, 2025-02-02

		Click to edit the outline text format

		Second Outline Level

		Third Outline Level

		Fourth Outline Level

		Fifth Outline Level

		Sixth Outline Level

		Seventh Outline Level

Row-Level Security sucks. Can we make it usable?

FOSDEM

Brussels, 2025-02-02

Event / Conference name

Location, Date

FOSDEM

Brussels, 2025-02-02

