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What IS
tnis talk?

IT systems can have commonalities
and share similar best practices

We will discuss PostgreSQL

best practices

How these translate to

best practices in general

Not all-inclusive or
May be preachy (for a reason)




We will
go over:

Proper data types
Locking
High concurrency &
transaction rate
Home-brewing
distributed systems (don't)
Tracking resource usage
Security
High Availability

... and some other stuff



Jsing the
proper data

types
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Data types and keys

* Use the correct data type for each thing you're storing

®* e.g.don't store datetime as text

- Waste of space, not indexable, no calculations

* Be aware of the data type storage requirements

* Don't use more storage than you need

- e.g.'open/‘closed vs boolean true/false

- It adds up!

OEDB
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1 + string bytes (+4 if > 127 bytes)

16

Data type sizes
boolean

bigint

timestamptz

double precision 8

uuid

int
text

OEDB



Jsing the right PK data type (i)

CREATE TABLE test (id bigint, content text);

CREATE

\timing

Timing is on.

INSERT INTO test SELECT generate_series(1,100000000), 'test';
INSERT 0 100000000

Time: 96202.739 ms (01:30.203)

ALTER TABLE test ADD PRIMARY KEY (id);

ALTER TABLE

Time: 38123.742 ms (00:38.124)




Jsing the right PK data type (i)

SELECT pg_column_size(id) FROM TEST LIMIT 1;
pg_column_size

8
\di+ test_pkey
List of relations
Schema | Name | Type | Owner | Table | Persistence | Access method | Size | Description
———————— e L e e T e et T e
public | test_pkey | index | foo | test | permanent | btree | 2142 MB |

(1 row)




Jsing the right PK data type  (iii)

CREATE TABLE test (id uuid, content text);
CREATE

\timing

Timing is on.

INSERT INTO test

SELECT gen_random_uuid, 'test' FROM generate_series(1,100000000) ;
INSERT © 100000000

Time: 387838.234 ms (06:27.838) +330%
ALTER TABLE test ADD PRIMARY KEY (id);
ALTER TABLE

Time: 67710.091 ms (01:07.710) +78%




Jsing the right PK data type  (iv)

SELECT pg_column_size(id) FROM TEST LIMIT 1;
pg_column_size

16
\di+ test_pkey

List of relations
Schema | Name | Type | Owner | Table | Persistence | Access method | Size | Description
———————— e L e e T e et T e
public | test_pkey | index | foo | test | permanent | btree | 3008 MB |
(1 row) +40%




Use IMESTAMP T/

Default is TIMESTAMP (WITHOUT TIME ZONE)
a.k.a. naive timestamps, no time zone information

- Arithmetic between timestamps entered at diff
time zones is meaningless, gives wrong results

Don’t use to store UTC, DB doesn’t know it's UTC

TIMESTAMP WITH TIME ZONE
Stores a moment in time

Arithmetic works correctly
Displays in your time zone, or AT TIME ZONE

OEDB
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* Natural primary key for time series data

* Do you need a surrogate (artificial) key?

* Really compact storage

* Partitions and indexes wonderfully
- Also: Block range indexes (BRIN)

For 166308001 records:
btreeindexis 2277 MB
brinindexis 192 kb

OEDB




‘Relational JSON’

* Anti-pattern

SELECT json_account -> 'id'

FROM accounts, sales

WHERE json_account ->> balance::int < 20000

AND json_sale ->> 'account_id' = json_account ->> 'id'
AND json_sale ->> 'amount'::int > 10000;

* NoSQL / “schemaless” was meant to eliminate the need for JOINs




Choosing the
rignt encoding
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* |s not a database encoding

* No encoding conversion or validation!
— Byte values 0-127 interpreted as ASCII

— Byte values 128-255 uninterpreted

* Setting behaves differently from other
character sets

* Can end up storing a mixture of encodings

— With no way to recover original strings

OepB
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JIFS

* Your safest bet
* If you're migrating, convert to UTF8
* Postgres has conversion functions available

Mind your collations
- Sort order

— Character classification

OEDB
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_ocking anc
now It affects
performance
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L ocks In PostgresSQL

* MVCC: Multi-Version Concurrency Control

* Rather than locking for high concurrency
and high performance

— Reading never waits

—  Writing doesn't block reading,
reading doesn't block writing

— Each write creates a new version of tuple

* Snapshot isolation: Timestamps &
Transaction IDs (XIDs)

OepB
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-Xplicit locks

* Table-level (e.g. SHARE) or row-level (e.g. FOR UPDATE)

* Conflict with other lock modes
(e.g. ACCESS EXCLUSIVE with ROW EXCLUSIVE)

* Block read/write access totally leading to waits

* Disastrous for performance

— Unless your application is exquisitely crafted

— Hint:itisn't

OepB
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Lightweight Locks (LWLocks) g

* Protect data in shared memory

Multi-process system

Ensure consistent reads/writes

Shared, Exclusive modes

* Enable fast MVCC

OEDB

Generally held briefly

Sometimes protect I/0
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To lock or not to lock?

* Avoid explicit locking!

* Use SSI (Serializable Snapshot Isolation:
SERIALIZABLE isolation level)

* Make application tolerant

— Allow it to fail and retry

* Slightly reduced concurrency, but:

- No blocking, no explicit locks needed
(SIReadLocks, rw-conflicts)

- Best performance choice for some applications

OEDB




Controlling
concurrency

&
transaction rate

OEDB /
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Concurrency: Connections  § \\u
b “

Don't overload your server for no reason
= 5000

- max_connections

Every client connection spawns a separate backend

process
IPC via semaphores & shared memory

- Risk: CPU context switching

Accessing the same objects from multiple

[
connections may incur many LWLocks

Lots of lockers slow each other down

OEDB
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Controlling concurrency g

* Pre-PG 13: Snapshot contention
Each transaction has an MVCC snapshot -
even if idle!

e Parallelization

— Count your cores!
max_parallel_workers(_per_gather)

Monitoring: pg_stat_activity (look for
wait_event_type: LWLock)

OQEDB
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Connection pooling

Rule of thumb: No more than 4 connections per core

* e.g. PgBouncer between application & DB

Allow fewer connections in, make the rest queue
for their turn

“Throttle” or introduce latency on the application
side, to save your server performance

® Sounds counter-intuitive!

Doesn’t necessarily slow anything down

- Queries may execute faster

OEDB
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High transaction rate

Postgres assigns an identifier to each transaction
Unsigned 32-bit int (4.2B values), circular space

— XID wraparound
Heavy OLTP workloads can go through 2.1B
transactions quickly

— Autovacuum
Can batching help? Does application really need

to commit everything atomically?
Batch size 1000 will have 1/1000th the burn rate

OEDB




Tracking
resource
usage
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PostgresUL statistics

Cumulative Statistics System (FKA Statistics Collector)  /

- Postgres subsystem that collects info about
system activity

* Dynamic statistics (right now)

* Cumulative statistics, but can be reset

 Table/index information on row &
disk block levels

* Thisinfo can be reported via views

OEDB
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Track over time

S
S

* For causal analysis and making predictions
- Troubleshooting

— Projections / futureproofing

* Log with monitoring tools
* Export with Prometheus

* Minimalist: pg_statviz extension

Qe NN —




Home-brewing
distributec
Systems
(don't)
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* Using native logical replication or pglogical 2
* Just establish a connection in each direction right?
-  Problem solved!
* Replication origins
— Ping-pong
* Concurrency

— Data conflicts

QEDB




Conflicts

Communication is not at light speed

Synchronous replication or explicit locking
kill performance

Data integrity / consistency
— Are all nodes consistent?
- Updating a row you didn't know was there

— Deleting a deleted row, etc.

Sequence management!

OEDB
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* Application needs to be multi-master aware
* Write on one node, read from another
- Inside the same application-level transaction
- Global transaction manager
* Successful SQL operations may well be

a business logic error

— Atomicity violation

OQEDB
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Jse the proper solution

Craft the distributed system inside your application

Use standard facilities like:
— Serializable isolation level
- Two-phase commits

Why do you really need multi-master?

Use a tool that was designed for this

- Not replicators / change data capture

OEDB




Configuring
for production
Usage
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* Very conservative, safest choices

* postgresqgl.conf:

# WRITE-AHEAD LOG

# - Settings -
wal_level = replica
fsync = on
synchronous_commit = on
full_page_writes = on

P




Defaults are (too) safe

 Safe for running on any (small) system

* For production, may be woefully inadequate

# - Memory -
shared_buffers = 128MB
work_mem = 4MB

# - Cost-Based Vacuum Delay -
vacuum_cost_limit = 200

* Autovacuum will not be aggressive enough

OEDB




Don't ‘Og tO
PGDATA

Run the risk of disk space
exhaustion

e.g. application endless loop
This will crash Postgres

|deally place log files on a
different filesystem

And monitor disk usage

40



AppIyINg
SECUrity
best practices

OEDB i
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Security by default (i)

* No cleartext passwords, no access by remote hosts, SSL used if available

* pg_hba.conf:

# TYPE DATABASE USER ADDRESS

# "local" is for Unix domain socket connections only
local all all

# IPv4 local connections:

host all all 127.0.0.1/32
# IPv6 local connections:

host all all ::1/128

METHOD

peer

scram-sha-256

scram-sha-256
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ng_hba.conf

* Host-Based Authentication

* trustisaVeryBad ldea™
- Even for local e.g. improper user can connect to /
the DB

- Postgres might be fine, but other software on
the same server could be compromised

* Default to giving access only where strictly
necessary (better safe...)

OQEDB
R R



Security by default (i)

* No cleartext passwords, no access by remote hosts, SSL used if available

* postgresql.conf:

# - Connection Settings -
listen_addresses = 'localhost'

# - Authentication -
password_encryption = scram-sha-256




* Listening for connections from clients
* There's a reason the default is 'localhost' (only TCP/IP loopback) /

— Make sure you only enable the interfaces and networks
which you actually want to have access to the DB

server

- e.g. Internet connection on one network & private
network on another interface

* Don't advertise your presence:

- 3,600,000 MySQL/MariaDB servers (port 3306)
found exposed on the Internet in May 2022

OEDB




Only give access where needed

Use superuser only for management of global objects

— Such as users

— Superuser bypasses a lot of checks

(Bad) code that’s normally harmless could be exploited in harmful way with
superuser access

Restrict database ownership to standard users

New in PG 16: Client-side requirements, Kerberos delegation




Applying Hign
Availability
best practices

OEDB /
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* pg_dump is not a backup
* A backup that is not tested is not a backup |

* A backup that is not automated is not a backup

* Use a specialized backup tool
— Preferably one created for Postgres

— Barman, pgBackRest, etc...

Point in time recovery (PITR) is a great tool

OQEDB
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High Availapility

* Practice redundancy
* Use standbys with a HA tool
* e.g. RepMgr, Patroni, EFM

* Kubernetes: CloudNativePG

* Pay close attention to your architecture

— Data centers

-  Withesses

—  Quorum

QEDB WN\—
R )




Jpgrading
IS Important

OEDB [
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Which version of Postgres
are you on’
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Whny people avoid upgrading

/

“It works fine now” — what about tomorrow?

[ J
* “Don't touch it, you might break it”

“Touch it, you can make it better — Seth Godin

* How well do you know your system?
- Breaking is learning

* False sense of stability

* Upgrade procedure not well defined

OepB
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Jpgrade reqularly

®* (Open source: updates issued rapidly

® Security updates known to roll out in a matter of hours
* Long-standing bugs undetected for years

* Triggering of unexpected behaviors in software

* Have a QA system to test upgrades regularly

* No license fees for test systems!




You may be missing out

e Stayed on PG13, didn't get:

—  Throughput improvement
for large numbers of
connections

- Streaming of large
transactions

- 1libpgq pipelining

e Stayed on PG14, didn't get:

Improved sort speed &
WAL compression

SQL MERGE

Logical Replication
improvements

JSON logging




You may be missing out

e Stay on PG15, and you won't get:
- Significant query performance improvements
— Logical replication from standby servers
— New SQL/JSON functionality
- pg_stat_io

- pg_hba.conf regular expressions




Thank you!

Find me on Mastodon:
@vyruss@fosstodon.org

Photo: Isle.of Skye, Scotland



