_ How PostgresQL
EDB Can Help You Enforce
Best Practices
Jimmy Angelakos
Senior Solutions Architect FOSSCOMM 2023-10-22 Heraklion

© EnterpriseDB Corporation 2023 - All Rights Reserved

ADoOUt me

QEDB

Based in Edinburgh, UK

Senior Solutions Architect, EDB
Background: Software Architecture

Open Source user & contributor (25+ years)
PostgreSQL user & contributor (15+ years)
Member of PostgreSQL Europe

Co-author: PostgreSQL 16

Administration Cookbook

Mastodon: @vyruss@fosstodon.org
YouTube: youtube.com/@JimmyAngelakos

What IS
tnis talk?

IT systems can have commonalities
and share similar best practices

We will discuss PostgreSQL

best practices

How these translate to

best practices in general

Not all-inclusive or
May be preachy (for a reason)

We will
go over:

Proper data types
Locking
High concurrency &
transaction rate
Home-brewing
distributed systems (don't)
Tracking resource usage
Security
High Availability

... and some other stuff

Jsing the
proper data

types

OEDB 5

© EnterpriseDB Corporation 20232 All Rights Reserved

Data types and keys

* Use the correct data type for each thing you're storing

®* e.g.don't store datetime as text

- Waste of space, not indexable, no calculations

* Be aware of the data type storage requirements

* Don't use more storage than you need

- e.g.'open/‘closed vs boolean true/false

- It adds up!

OEDB

© EnterpriseDB Corporation 2023 - All Rights Reserved

1 + string bytes (+4 if > 127 bytes)

16

Data type sizes
boolean

bigint

timestamptz

double precision 8

uuid

int
text

OEDB

Jsing the right PK data type (i)

CREATE TABLE test (id bigint, content text);

CREATE

\timing

Timing is on.

INSERT INTO test SELECT generate_series(1,100000000), 'test';
INSERT 0 100000000

Time: 96202.739 ms (01:30.203)

ALTER TABLE test ADD PRIMARY KEY (id);

ALTER TABLE

Time: 38123.742 ms (00:38.124)

Jsing the right PK data type (i)

SELECT pg_column_size(id) FROM TEST LIMIT 1;
pg_column_size

8
\di+ test_pkey
List of relations
Schema | Name | Type | Owner | Table | Persistence | Access method | Size | Description
———————— e L e e T e et T e
public | test_pkey | index | foo | test | permanent | btree | 2142 MB |

(1 row)

Jsing the right PK data type (iii)

CREATE TABLE test (id uuid, content text);
CREATE

\timing

Timing is on.

INSERT INTO test

SELECT gen_random_uuid, 'test' FROM generate_series(1,100000000) ;
INSERT © 100000000

Time: 387838.234 ms (06:27.838) +330%
ALTER TABLE test ADD PRIMARY KEY (id);
ALTER TABLE

Time: 67710.091 ms (01:07.710) +78%

Jsing the right PK data type (iv)

SELECT pg_column_size(id) FROM TEST LIMIT 1;
pg_column_size

16
\di+ test_pkey

List of relations
Schema | Name | Type | Owner | Table | Persistence | Access method | Size | Description
———————— e L e e T e et T e
public | test_pkey | index | foo | test | permanent | btree | 3008 MB |
(1 row) +40%

Use IMESTAMP T/

Default is TIMESTAMP (WITHOUT TIME ZONE)
a.k.a. naive timestamps, no time zone information

- Arithmetic between timestamps entered at diff
time zones is meaningless, gives wrong results

Don’t use to store UTC, DB doesn’t know it's UTC

TIMESTAMP WITH TIME ZONE
Stores a moment in time

Arithmetic works correctly
Displays in your time zone, or AT TIME ZONE

OEDB

il
/Jj,

‘.‘I’g_‘f’(ﬁz
,;f!;“;’."'yf
y

* Natural primary key for time series data

* Do you need a surrogate (artificial) key?

* Really compact storage

* Partitions and indexes wonderfully
- Also: Block range indexes (BRIN)

For 166308001 records:
btreeindexis 2277 MB
brinindexis 192 kb

OEDB

‘Relational JSON’

* Anti-pattern

SELECT json_account -> 'id'

FROM accounts, sales

WHERE json_account ->> balance::int < 20000

AND json_sale ->> 'account_id' = json_account ->> 'id'
AND json_sale ->> 'amount'::int > 10000;

* NoSQL / “schemaless” was meant to eliminate the need for JOINs

Choosing the
rignt encoding

OEDB {

© EnterpriseDB Corporation 20232 All Rights Reserved

27
—
2
2

s
SR
=

=
=
25

——

=
e

SS—xs
s

S———

———

s

i
S L / \SC| | iy
,‘,F:f“.
i i

* |s not a database encoding

* No encoding conversion or validation!
— Byte values 0-127 interpreted as ASCII

— Byte values 128-255 uninterpreted

* Setting behaves differently from other
character sets

* Can end up storing a mixture of encodings

— With no way to recover original strings

OepB
AR N

JIFS

* Your safest bet
* If you're migrating, convert to UTF8
* Postgres has conversion functions available

Mind your collations
- Sort order

— Character classification

OEDB

2

=
=
=
-
S

f

e
SR
e

=
—
——
p——

>z
S

e

=S

==

===
S
=
-
\\

s

————
=
N

=

S
e
=

s

_ocking anc
now It affects
performance

OEDB 19

© EnterpriseDB Corporation 20232 All Rights Reserved

27
—
2
2

s
SR
=

=
=
25

s

-

==

e

—
———
==

=

—

S

——

L ocks In PostgresSQL

* MVCC: Multi-Version Concurrency Control

* Rather than locking for high concurrency
and high performance

— Reading never waits

— Writing doesn't block reading,
reading doesn't block writing

— Each write creates a new version of tuple

* Snapshot isolation: Timestamps &
Transaction IDs (XIDs)

OepB
AR N

AR
oy

o

B

L
v

—

/|

-Xplicit locks

* Table-level (e.g. SHARE) or row-level (e.g. FOR UPDATE)

* Conflict with other lock modes
(e.g. ACCESS EXCLUSIVE with ROW EXCLUSIVE)

* Block read/write access totally leading to waits

* Disastrous for performance

— Unless your application is exquisitely crafted

— Hint:itisn't

OepB
AR N

Lightweight Locks (LWLocks) g

* Protect data in shared memory

Multi-process system

Ensure consistent reads/writes

Shared, Exclusive modes

* Enable fast MVCC

OEDB

Generally held briefly

Sometimes protect I/0

/i
10
0

To lock or not to lock?

* Avoid explicit locking!

* Use SSI (Serializable Snapshot Isolation:
SERIALIZABLE isolation level)

* Make application tolerant

— Allow it to fail and retry

* Slightly reduced concurrency, but:

- No blocking, no explicit locks needed
(SIReadLocks, rw-conflicts)

- Best performance choice for some applications

OEDB

Controlling
concurrency

&
transaction rate

OEDB /

© EnterpriseDB Corporation 20232 All Rights Reserved

Concurrency: Connections § \\u
b “

Don't overload your server for no reason
= 5000

- max_connections

Every client connection spawns a separate backend

process
IPC via semaphores & shared memory

- Risk: CPU context switching

Accessing the same objects from multiple

[
connections may incur many LWLocks

Lots of lockers slow each other down

OEDB

s
S

S
<

e
=

=

e

—

Controlling concurrency g

* Pre-PG 13: Snapshot contention
Each transaction has an MVCC snapshot -
even if idle!

e Parallelization

— Count your cores!
max_parallel_workers(_per_gather)

Monitoring: pg_stat_activity (look for
wait_event_type: LWLock)

OQEDB
R R

Connection pooling

Rule of thumb: No more than 4 connections per core

* e.g. PgBouncer between application & DB

Allow fewer connections in, make the rest queue
for their turn

“Throttle” or introduce latency on the application
side, to save your server performance

® Sounds counter-intuitive!

Doesn’t necessarily slow anything down

- Queries may execute faster

OEDB

BN JJ
/4/

/

%

High transaction rate

Postgres assigns an identifier to each transaction
Unsigned 32-bit int (4.2B values), circular space

— XID wraparound
Heavy OLTP workloads can go through 2.1B
transactions quickly

— Autovacuum
Can batching help? Does application really need

to commit everything atomically?
Batch size 1000 will have 1/1000th the burn rate

OEDB

Tracking
resource
usage

OEDB i

© EnterpriseDB Corporation 20232 All Rights Reserved

.
2T

2

2
—
2
SSses

o
2R
-
=
S 5

———
==

=

S
—
o~

—
—

S

e
——

e

=
s

PostgresUL statistics

Cumulative Statistics System (FKA Statistics Collector) /

- Postgres subsystem that collects info about
system activity

* Dynamic statistics (right now)

* Cumulative statistics, but can be reset

 Table/index information on row &
disk block levels

* Thisinfo can be reported via views

OEDB

<
s

Ly
s
=
P

2

=
—
e

X

=5
5

4/

Soees

e

e

S5

s

<=

—

=

—————
=
SN

e

S

——

Track over time

S
S

* For causal analysis and making predictions
- Troubleshooting

— Projections / futureproofing

* Log with monitoring tools
* Export with Prometheus

* Minimalist: pg_statviz extension

Qe NN —

Home-brewing
distributec
Systems
(don't)

OEDB [

© EnterpriseDB Corporation 20232 All Rights Reserved

el
- -)
[
ome-brewing multi-master j/
/104
e
7
.) .»;i??/
* Using native logical replication or pglogical 2
* Just establish a connection in each direction right?
- Problem solved!
* Replication origins
— Ping-pong
* Concurrency

— Data conflicts

QEDB

Conflicts

Communication is not at light speed

Synchronous replication or explicit locking
kill performance

Data integrity / consistency
— Are all nodes consistent?
- Updating a row you didn't know was there

— Deleting a deleted row, etc.

Sequence management!

OEDB

s I
s

s
oy

=

S

——
oS
o
==
——

s
L. : : Ly
A x*.
criallZation anornallies |
e \ ‘
it |
a]
. . . / }
* Application needs to be multi-master aware
* Write on one node, read from another
- Inside the same application-level transaction
- Global transaction manager
* Successful SQL operations may well be

a business logic error

— Atomicity violation

OQEDB
R R

Jse the proper solution

Craft the distributed system inside your application

Use standard facilities like:
— Serializable isolation level
- Two-phase commits

Why do you really need multi-master?

Use a tool that was designed for this

- Not replicators / change data capture

OEDB

Configuring
for production
Usage

OEDB [

© EnterpriseDB Corporation 20232 All Rights Reserved

Wﬁiff’ﬁ

,":" ‘_‘1“;’/
* Very conservative, safest choices

* postgresqgl.conf:

WRITE-AHEAD LOG

- Settings -
wal_level = replica
fsync = on
synchronous_commit = on
full_page_writes = on

P

Defaults are (too) safe

 Safe for running on any (small) system

* For production, may be woefully inadequate

- Memory -
shared_buffers = 128MB
work_mem = 4MB

- Cost-Based Vacuum Delay -
vacuum_cost_limit = 200

* Autovacuum will not be aggressive enough

OEDB

Don't ‘Og tO
PGDATA

Run the risk of disk space
exhaustion

e.g. application endless loop
This will crash Postgres

|deally place log files on a
different filesystem

And monitor disk usage

40

AppIyINg
SECUrity
best practices

OEDB i

© EnterpriseDB Corporation 20232 All Rights Reserved

Security by default (i)

* No cleartext passwords, no access by remote hosts, SSL used if available

* pg_hba.conf:

TYPE DATABASE USER ADDRESS

"local" is for Unix domain socket connections only
local all all

IPv4 local connections:

host all all 127.0.0.1/32
IPv6 local connections:

host all all ::1/128

METHOD

peer

scram-sha-256

scram-sha-256

ool

T e AT
S,
=

ng_hba.conf

* Host-Based Authentication

* trustisaVeryBad ldea™
- Even for local e.g. improper user can connect to /
the DB

- Postgres might be fine, but other software on
the same server could be compromised

* Default to giving access only where strictly
necessary (better safe...)

OQEDB
R R

Security by default (i)

* No cleartext passwords, no access by remote hosts, SSL used if available

* postgresql.conf:

- Connection Settings -
listen_addresses = 'localhost'

- Authentication -
password_encryption = scram-sha-256

* Listening for connections from clients
* There's a reason the default is 'localhost' (only TCP/IP loopback) /

— Make sure you only enable the interfaces and networks
which you actually want to have access to the DB

server

- e.g. Internet connection on one network & private
network on another interface

* Don't advertise your presence:

- 3,600,000 MySQL/MariaDB servers (port 3306)
found exposed on the Internet in May 2022

OEDB

Only give access where needed

Use superuser only for management of global objects

— Such as users

— Superuser bypasses a lot of checks

(Bad) code that’s normally harmless could be exploited in harmful way with
superuser access

Restrict database ownership to standard users

New in PG 16: Client-side requirements, Kerberos delegation

Applying Hign
Availability
best practices

OEDB /

© EnterpriseDB Corporation 20232 All Rights Reserved

--...
e

s
oy

o

————
=2
==
S
=<
—

i
i “.'
. U . ,;;f;;/’ﬁ

* pg_dump is not a backup
* A backup that is not tested is not a backup |

* A backup that is not automated is not a backup

* Use a specialized backup tool
— Preferably one created for Postgres

— Barman, pgBackRest, etc...

Point in time recovery (PITR) is a great tool

OQEDB
R R

7

-~
o~

.
5
27
.
o

==

o
2
2%

==

—

=
Soees

e

s

———

e
—_——

e

s
"1"&'.._\\"!&{2

=
=

S
N,

High Availapility

* Practice redundancy
* Use standbys with a HA tool
* e.g. RepMgr, Patroni, EFM

* Kubernetes: CloudNativePG

* Pay close attention to your architecture

— Data centers

- Withesses

— Quorum

QEDB WN\—
R)

Jpgrading
IS Important

OEDB [

© EnterpriseDB Corporation 20232 All Rights Reserved

Which version of Postgres
are you on’

=
=
.
2T
Z

=%
25

o
2R
=

SIS52

-

ot

=
e

G o
e
.

=
==

_—

——

Whny people avoid upgrading

/

“It works fine now” — what about tomorrow?

[J
* “Don't touch it, you might break it”

“Touch it, you can make it better — Seth Godin

* How well do you know your system?
- Breaking is learning

* False sense of stability

* Upgrade procedure not well defined

OepB
AR N

Jpgrade reqularly

®* (Open source: updates issued rapidly

® Security updates known to roll out in a matter of hours
* Long-standing bugs undetected for years

* Triggering of unexpected behaviors in software

* Have a QA system to test upgrades regularly

* No license fees for test systems!

You may be missing out

e Stayed on PG13, didn't get:

— Throughput improvement
for large numbers of
connections

- Streaming of large
transactions

- 1libpgq pipelining

e Stayed on PG14, didn't get:

Improved sort speed &
WAL compression

SQL MERGE

Logical Replication
improvements

JSON logging

You may be missing out

e Stay on PG15, and you won't get:
- Significant query performance improvements
— Logical replication from standby servers
— New SQL/JSON functionality
- pg_stat_io

- pg_hba.conf regular expressions

Thank you!

Find me on Mastodon:
@vyruss@fosstodon.org

Photo: Isle.of Skye, Scotland

