
© EnterpriseDB Corporation 2023 - All Rights Reserved

How PostgreSQL
Can Help You Enforce
Best Practices

 Jimmy Angelakos
 Senior Solutions Architect PGConf NYC 2023-10-05

© EnterpriseDB Corporation 2023 - All Rights Reserved

What is
this talk?

2

● IT systems can have commonalities
and share similar best practices

● We will discuss PostgreSQL
best practices

● How these translate to
best practices in general

● Not all-inclusive or in-depth!
● May be preachy (for a reason)

© EnterpriseDB Corporation 2023 - All Rights Reserved

We will
go over:

3

● Proper data types
● Locking
● High concurrency &

transaction rate
● Home-brewing

distributed systems
● Tracking resource usage
● Security
● High Availability

… and some other stuff

 (don’t)

© EnterpriseDB Corporation 2023 - All Rights Reserved

4

Using the
proper data

types

4

© EnterpriseDB Corporation 2023 - All Rights Reserved

5

● Use the correct data type for each thing you’re storing

● e.g. don’t store datetime as text
– Waste of space, not indexable, no calculations

● Be aware of the data type storage requirements

● Don’t use more storage than you need
– e.g. 'open'/'closed' vs boolean true/false
– It adds up!

Data types and keys

© EnterpriseDB Corporation 2023 - All Rights Reserved

6

© EnterpriseDB Corporation 2023 - All Rights Reserved

7

Data type sizes
Data type Size in bytes

boolean 1

int 4

bigint 8

timestamptz 8

double precision 8

uuid 16

text 1 + string bytes (+4 if > 127 bytes)

© EnterpriseDB Corporation 2023 - All Rights Reserved

8

CREATE TABLE test (id bigint, content text);
CREATE
\timing
Timing is on.
INSERT INTO test SELECT generate_series(1,100000000), 'test';
INSERT 0 100000000
Time: 90202.739 ms (01:30.203)
ALTER TABLE test ADD PRIMARY KEY (id);
ALTER TABLE
Time: 38123.742 ms (00:38.124)

Using the right PK data type (i)

© EnterpriseDB Corporation 2023 - All Rights Reserved

9

SELECT pg_column_size(id) FROM TEST LIMIT 1;
 pg_column_size

 8
\di+ test_pkey
 List of relations
 Schema | Name | Type | Owner | Table | Persistence | Access method | Size | Description
--------+-----------+-------+-------+-------+-------------+---------------+---------+-------------
 public | test_pkey | index | foo | test | permanent | btree | 2142 MB |
(1 row)

Using the right PK data type (ii)

© EnterpriseDB Corporation 2023 - All Rights Reserved

10

CREATE TABLE test (id uuid, content text);
CREATE
\timing
Timing is on.
INSERT INTO test
SELECT gen_random_uuid, 'test' FROM generate_series(1,100000000);
INSERT 0 100000000
Time: 387838.234 ms (06:27.838) +330%
ALTER TABLE test ADD PRIMARY KEY (id);
ALTER TABLE
Time: 67710.091 ms (01:07.710) +78%

Using the right PK data type (iii)

© EnterpriseDB Corporation 2023 - All Rights Reserved

11

SELECT pg_column_size(id) FROM TEST LIMIT 1;
 pg_column_size

 16
\di+ test_pkey
 List of relations
 Schema | Name | Type | Owner | Table | Persistence | Access method | Size | Description
--------+-----------+-------+-------+-------+-------------+---------------+---------+-------------
 public | test_pkey | index | foo | test | permanent | btree | 3008 MB |
(1 row) +40%

Using the right PK data type (iv)

© EnterpriseDB Corporation 2023 - All Rights Reserved

12

● Default is TIMESTAMP (WITHOUT TIME ZONE)
– a.k.a. naïve timestamps, no time zone information
– Arithmetic between timestamps entered at diff

time zones is meaningless, gives wrong results
– Don’t use to store UTC, DB doesn’t know it’s UTC

● TIMESTAMP WITH TIME ZONE
– Stores a moment in time
– Arithmetic works correctly
– Displays in your time zone, or AT TIME ZONE

Use TIMESTAMPTZ

© EnterpriseDB Corporation 2023 - All Rights Reserved

13

● Natural primary key for time series data

● Do you need a surrogate (artificial) key?

● Really compact storage

● Partitions and indexes wonderfully
– Also: Block range indexes (BRIN)

For 106308001 records:
btree index is 2277 MB
brin index is 192 kb

Use TIMESTAMPTZ as PK

© EnterpriseDB Corporation 2023 - All Rights Reserved

14

● Anti-pattern

SELECT json_account -> 'id'
FROM accounts, sales
WHERE json_account ->> balance::int < 20000
AND json_sale ->> 'account_id' = json_account ->> 'id'
AND json_sale ->> 'amount'::int > 10000;

● NoSQL / “schemaless” was meant to eliminate the need for JOINs

“Relational JSON”

© EnterpriseDB Corporation 2023 - All Rights Reserved

15

Choosing the
right encoding

15

© EnterpriseDB Corporation 2023 - All Rights Reserved

16

● Is not a database encoding

● No encoding conversion or validation!
– Byte values 0-127 interpreted as ASCII
– Byte values 128-255 uninterpreted

● Setting behaves differently from other
character sets

● Can end up storing a mixture of encodings
– With no way to recover original strings

SQL_ASCII

© EnterpriseDB Corporation 2023 - All Rights Reserved

17

● Your safest bet

● If you’re migrating, convert to UTF8

● Postgres has conversion functions available

● Mind your collations
– Sort order
– Character classification

UTF8

© EnterpriseDB Corporation 2023 - All Rights Reserved

18

Locking and
how it affects
performance

18

© EnterpriseDB Corporation 2023 - All Rights Reserved

19

● MVCC: Multi-Version Concurrency Control

● Rather than locking for high concurrency
and high performance
– Reading never waits
– Writing doesn’t block reading,

reading doesn’t block writing
– Each write creates a new version of tuple

● Snapshot isolation: Timestamps &
Transaction IDs (XIDs)

Locks in PostgreSQL

© EnterpriseDB Corporation 2023 - All Rights Reserved

20

● Table-level (e.g. SHARE) or row-level (e.g. FOR UPDATE)

● Conflict with other lock modes
(e.g. ACCESS EXCLUSIVE with ROW EXCLUSIVE)

● Block read/write access totally leading to waits

● Disastrous for performance
– Unless your application is exquisitely crafted
– Hint: it isn’t

Explicit locks

© EnterpriseDB Corporation 2023 - All Rights Reserved

21

● Protect data in shared memory
– Multi-process system
– Ensure consistent reads/writes
– Shared, Exclusive modes

● Enable fast MVCC
– Generally held briefly
– Sometimes protect I/O

Lightweight Locks (LWLocks)

© EnterpriseDB Corporation 2023 - All Rights Reserved

22

● Avoid explicit locking!

● Use SSI (Serializable Snapshot Isolation:
SERIALIZABLE isolation level)

● Make application tolerant
– Allow it to fail and retry

● Slightly reduced concurrency, but:
– No blocking, no explicit locks needed

(SIReadLocks, rw-conflicts)
– Best performance choice for some applications

To lock or not to lock?

© EnterpriseDB Corporation 2023 - All Rights Reserved

23

Controlling
concurrency

&
transaction rate

23

© EnterpriseDB Corporation 2023 - All Rights Reserved

24

● Don’t overload your server for no reason
– max_connections = 5000 🤘

● Every client connection spawns a separate backend
process
– IPC via semaphores & shared memory
– Risk: CPU context switching

● Accessing the same objects from multiple
connections may incur many LWLocks
– Lots of lockers slow each other down
–

Concurrency: Connections

© EnterpriseDB Corporation 2023 - All Rights Reserved

25

● Pre-PG 13: Snapshot contention
– Each transaction has an MVCC snapshot –

even if idle!

● Parallelization
– Count your cores!
– max_parallel_workers(_per_gather)

● Monitoring: pg_stat_activity (look for
wait_event_type: LWLock)

Controlling concurrency

© EnterpriseDB Corporation 2023 - All Rights Reserved

26

● Rule of thumb: No more than 4 connections per core

● e.g. PgBouncer between application & DB
– Allow fewer connections in, make the rest queue

for their turn
– “Throttle” or introduce latency on the application

side, to save your server performance

● Sounds counter-intuitive!
– Doesn’t necessarily slow anything down
– Queries may execute faster

Connection pooling

© EnterpriseDB Corporation 2023 - All Rights Reserved

27

● Postgres assigns an identifier to each transaction
– Unsigned 32-bit int (4.2B values), circular space
– XID wraparound

● Heavy OLTP workloads can go through 2.1B
transactions quickly
– Autovacuum
– Can batching help? Does application really need

to commit everything atomically?
– Batch size 1000 will have 1/1000th the burn rate

High transaction rate

© EnterpriseDB Corporation 2023 - All Rights Reserved

28

Tracking
resource

usage

28

© EnterpriseDB Corporation 2023 - All Rights Reserved

29

● Cumulative Statistics System (FKA Statistics Collector)
– Postgres subsystem that collects info about

system activity

● Dynamic statistics (right now)

● Cumulative statistics, but can be reset

● Table/index information on row &
disk block levels

● This info can be reported via views

PostgreSQL statistics

© EnterpriseDB Corporation 2023 - All Rights Reserved

30

● For causal analysis and making predictions
– Troubleshooting
– Projections / futureproofing

● Log with monitoring tools

● Export with Prometheus

● Minimalist: pg_statviz extension

Track over time

© EnterpriseDB Corporation 2023 - All Rights Reserved

31

Home-brewing
distributed
systems

(don’t)

31

© EnterpriseDB Corporation 2023 - All Rights Reserved

32

● Using native logical replication or pglogical 2

● Just establish a connection in each direction right?
– Problem solved!

● Replication origins
– Ping-pong

● Concurrency
– Data conflicts

Home-brewing multi-master

© EnterpriseDB Corporation 2023 - All Rights Reserved

33

● Communication is not at light speed

● Synchronous replication or explicit locking
kill performance

● Data integrity / consistency
– Are all nodes consistent?
– Updating a row you didn’t know was there
– Deleting a deleted row, etc.

● Sequence management!

Conflicts

© EnterpriseDB Corporation 2023 - All Rights Reserved

34

● Application needs to be multi-master aware

● Write on one node, read from another
– Inside the same application-level transaction
– Global transaction manager

● Successful SQL operations may well be
a business logic error
– Atomicity violation

Serialization anomalies

© EnterpriseDB Corporation 2023 - All Rights Reserved

35

● Craft the distributed system inside your application

● Use standard facilities like:
– Serializable isolation level
– Two-phase commits

● Why do you really need multi-master?

● Use a tool that was designed for this
– Not replicators / change data capture

Use the proper solution

© EnterpriseDB Corporation 2023 - All Rights Reserved

36

Configuring
for production

usage

36

© EnterpriseDB Corporation 2023 - All Rights Reserved

37

● Very conservative, safest choices
● postgresql.conf:

WRITE-AHEAD LOG
- Settings -
wal_level = replica
fsync = on
synchronous_commit = on
full_page_writes = on

Defaults are safe

© EnterpriseDB Corporation 2023 - All Rights Reserved

38

● Safe for running on any (small) system

● For production, may be woefully inadequate

- Memory -
shared_buffers = 128MB
work_mem = 4MB

- Cost-Based Vacuum Delay -
vacuum_cost_limit = 200

● Autovacuum will not be aggressive enough

Defaults are (too) safe

© EnterpriseDB Corporation 2023 - All Rights Reserved

39

Don’t log to
PGDATA

● Run the risk of disk space
exhaustion

● e.g. application endless loop

● This will crash Postgres

● Ideally place log files on a
different filesystem

● And monitor disk usage

© EnterpriseDB Corporation 2023 - All Rights Reserved

40

Applying
Security

best practices

40

© EnterpriseDB Corporation 2023 - All Rights Reserved

41

● No cleartext passwords, no access by remote hosts, SSL used if available

● pg_hba.conf:

TYPE DATABASE USER ADDRESS METHOD
"local" is for Unix domain socket connections only
local all all peer
IPv4 local connections:
host all all 127.0.0.1/32 scram-sha-256
IPv6 local connections:
host all all ::1/128 scram-sha-256

Security by default (i)

© EnterpriseDB Corporation 2023 - All Rights Reserved

42

● Host-Based Authentication

● trust is a Very Bad Idea™
– Even for local e.g. improper user can connect to

the DB
– Postgres might be fine, but other software on

the same server could be compromised

● Default to giving access only where strictly
necessary (better safe...)

pg_hba.conf

© EnterpriseDB Corporation 2023 - All Rights Reserved

43

● No cleartext passwords, no access by remote hosts, SSL used if available

● postgresql.conf:

- Connection Settings -
listen_addresses = 'localhost'

- Authentication -
password_encryption = scram-sha-256

- SSL -
ssl = on

Security by default (ii)

© EnterpriseDB Corporation 2023 - All Rights Reserved

44

● Listening for connections from clients

● There’s a reason the default is 'localhost' (only TCP/IP loopback)
– Make sure you only enable the interfaces and networks

which you actually want to have access to the DB
server

– e.g. Internet connection on one network & private
network on another interface

● Don’t advertise your presence:
– 3,600,000 MySQL/MariaDB servers (port 3306)

found exposed on the Internet in May 2022

listen_addresses = 'localhost'

© EnterpriseDB Corporation 2023 - All Rights Reserved

45

● Use superuser only for management of global objects
– Such as users
– Superuser bypasses a lot of checks

● (Bad) code that’s normally harmless could be exploited in harmful way with
superuser access

● Restrict database ownership to standard users

● New in PG 16: Client-side requirements, Kerberos delegation

Only give access where needed

© EnterpriseDB Corporation 2023 - All Rights Reserved

46

Applying High
Availability

best practices

46

© EnterpriseDB Corporation 2023 - All Rights Reserved

47

● pg_dump is not a backup

● A backup that is not tested is not a backup

● A backup that is not automated is not a backup

● Use a specialized backup tool
– Preferably one created for Postgres
– Barman, pgBackRest, etc…

● Point in time recovery (PITR) is a great tool

Back! Up!

© EnterpriseDB Corporation 2023 - All Rights Reserved

48

● Practice redundancy
● Use standbys with a HA tool
● e.g. RepMgr, Patroni, EFM

● Kubernetes: CloudNativePG

● Pay close attention to your architecture
– Data centers
– Witnesses
– Quorum

High Availability

© EnterpriseDB Corporation 2023 - All Rights Reserved

49

Upgrading
is important

49

© EnterpriseDB Corporation 2023 - All Rights Reserved

50

Which version of Postgres
are you on?

© EnterpriseDB Corporation 2023 - All Rights Reserved

51

© EnterpriseDB Corporation 2023 - All Rights Reserved

 – what about tomorrow?

52

● “It works fine now”

● “Don’t touch it, you might break it”

“Touch it, you can make it better – Seth Godin

● How well do you know your system?
– Breaking is learning

● False sense of stability

● Upgrade procedure not well defined

Why people avoid upgrading

© EnterpriseDB Corporation 2023 - All Rights Reserved

53

● Open source: updates issued rapidly
● Security updates known to roll out in a matter of hours
● Long-standing bugs undetected for years
● Triggering of unexpected behaviors in software
● Have a QA system to test upgrades regularly

● No license fees for test systems!

Upgrade regularly

© EnterpriseDB Corporation 2023 - All Rights Reserved

54

● Stayed on PG13, didn’t get:
– Throughput improvement

for large numbers of
connections

– Streaming of large
transactions

– libpq pipelining

● Stayed on PG14, didn’t get:
– Improved sort speed &

WAL compression
– SQL MERGE
– Logical Replication

improvements
– JSON logging

You may be missing out

© EnterpriseDB Corporation 2023 - All Rights Reserved

55

● Stay on PG15, and you won’t get:
– Significant query performance improvements
– Logical replication from standby servers
– New SQL/JSON functionality
– pg_stat_io
– pg_hba.conf regular expressions

You may be missing out

© EnterpriseDB Corporation 2023 - All Rights Reserved

Thank you!

 Find me onFind me on Mastodon: Mastodon:
@vyruss@fosstodon.org @vyruss@fosstodon.org

Photo: Isle of Skye, ScotlandPhoto: Isle of Skye, Scotland

