- Mom, can we have G**gle Maps?
- We have G**gle Maps at home

Jimmy Angelakos
About me

- Systems & Database Architect
- Based in Edinburgh, Scotland
- Open Source user & contributor (25+ years)
- PostgreSQL exclusively (16+ years)
- Author, PostgreSQL Mistakes and How to Avoid Them
- Co-author, PostgreSQL 16 Administration Cookbook
- pg_statviz PostgreSQL extension
What I am not and what this talk is not

- Not a GIS expert
- Not an in-depth analysis
- Not a detailed HOWTO
- GIS subject is too extensive
So what is this about?

- Awareness of the combined potential of:
 - PostgreSQL
 - GIS
 - PostGIS
 - OpenStreetMap
- I’ve tried these things, and so can you!

Mom, can we have Google Maps? We have Google Maps at home
Geographic Information Systems (GIS)

• Context: Software for geographic data (geodata)
 – Stores
 – Manages
 – Analyzes
 – Edits
 – Outputs
 – Visualizes
What can you use GIS for?

• Besides the obvious: Storing maps
• Associating data with locations → geodata
• Applications:
 – Governance
 – Environmental science
 – Health
 – History and archaeology
 – Cultural and social study

Mom, can we have G**gle Maps? –We have G**gle Maps at home
What can you use GIS in the database for?

- Develop location-aware services
 - Search for a POI (e.g. ATM) in Chicago
 - Search for the nearest ATMs
 - Time, weather, events where I am

- Associate things with GPS coordinates
 - Perform spatial queries (esp. with joins)

- Routing (how to get from A to C via B)
How do I get geodata in my PostgreSQL?

- PostGIS: extension for geographical objects
 - Supports probably any kind of spatial type and query you can think of
 - Based on “light-weight geometries” for optimal indexing, memory footprint
 - Makes Postgres the de facto industry standard in spatial databases
 - Open Geospatial Consortium hasn’t certified it 😒

Mom, can we have G**gle Maps? We have G**gle Maps at home
PostGIS

- Postgres can instantly return spatial containment result
 - Is this point (set of coordinates) inside the area of this geographical feature (lake, city, etc.)?
- Distance calculations
 - How far away are these two points?
- Advanced spatial queries such as k-nearest neighbor search
 - What are the N nearest <candidate features> to <query feature>?
Where do I get this geodata?

• Proprietary data
 – MapQuest, HERE, Google Maps, TomTom, Bing Maps, ESRI, etc.
 – Service providers: Mapbox, Amazon Location Service, etc.

• Open data
 – OpenStreetMap (OSM)
 – Wikimapia (?)
INTERMISSION

- Let’s talk about OpenStreetMap
What’s OpenStreetMap?

• Free & open geographic database
• Created by Steve Coast in 2004
 – Ordnance Survey refusing to release data
• Accelerated adoption in 2012
 – Google started charging for Maps
• Collaboratively updated & maintained by community
• Database hosted by OpenStreetMap Foundation

– Mom, can we have G**gle Maps? – We have G**gle Maps at home
Why is OpenStreetMap important?

- The Wikipedia of geographical knowledge
- Governance
 - UK-based non-profit with local chapters (e.g. US)
- Licensing
 - Open Database License (OdbL)
 - Attribution, Share-Alike, Keep Open (copyleft)
- Used by tons of websites, apps, tools
What’s in OSM data? (Data Primitives)

- **Nodes**: WGS84 coordinates
 Features without size like POI

- **Ways**: Ordered lists of Nodes → lines or polygons
 Features like streets (linear) or lakes (areas)

- **Relations**: Ordered lists of Nodes, Ways, Relations
 Represent relationships of above

- **Tags**: Key-Value pairs for metadata of above objects
Where does PostgreSQL come in?

- OSM server uses PostgreSQL
- Tables of primitives
- Individual objects stored as rows
- Exports of data
 - Dumps of any size (incl. `planet.osm`)
 - Formats: PBF, XML
How can I use OpenStreetMap data?

- Direct access to objects (*osm_id*)
 - Spatial queries
- Geocoding
- Reverse geocoding
- Integrate map displays w/ a map server
INTERMISSION (again)

• Let’s talk about geocoding
What is geocoding?

- Search that returns the coordinates of a place/feature
 - By giving address or name
- Reverse: Search returns data on place/feature
 - By giving the coordinates
What are some geocoding tools?

- Nominatim
 - nominatim.openstreetmap.org

- Non-Postgres: photon
 - photon.komoot.io

- Others
 - wiki.openstreetmap.org/wiki/Geocoding
So what’s the basic idea?

- Instead of relying on external/expensive Geodata APIs...
- Take this in-house by using OSM data inside PostgreSQL
- In conjunction with open source GIS tools
Getting the OSM data

```
transmission-cli -w . \ 
  -d 150000 \ 
https://planet.openstreetmap.org/pbf/planet-
latest.osm.pbf.torrent
```
Getting the OSM data into Postgres

- There are standard ways of ingesting OSM data into PostgreSQL such as PgOSM Flex
- Ingestion takes 1.5 days for whole-planet data (~ 1TB)
- Subsequent updates to the data are much faster
Mom, can we have G**gle Maps? — We have G**gle Maps at home.
Mom, can we have G**gle Maps?
We have G**gle Maps at home.
Nominatim

- Comes in flavors:
 - (legacy) PHP
 - (whew) Python
- Install service as a Python ASGI application
- Serve via nginx
Querying Nominatim

```bash
curl "https://nominatim.openstreetmap.org/search?q=Chicago"
curl "https://localhost/search?q=Chicago&format=geojson"
```

Mom, can we have G**gle Maps?
We have G**gle Maps at home
Querying Nominatim

```
{
  "type": "FeatureCollection",
  "licence": "Data © OpenStreetMap contributors, ODbL 1.0. http://osm.org/copyright",
  "features": [
    {
      "type": "Feature",
      "properties": {
        "place_id": 26249932,
        "osm_type": "relation",
        "osm_id": 122684,
        "place_rank": 16,
        "category": "boundary",
        "type": "administrative",
        "importance": 0.7515295727100249,
        "address_type": "city",
        "name": "Chicago",
        "display_name": "Chicago, Cook County, Illinois, United States"
      },
      "bbox": [
        -87.9400876, -87.5240812,
        41.644531, 42.0230396
      ],
      "geometry": {
        "type": "Point",
        "coordinates": [
          -87.6244212,
          41.8755616
        ]
      }
    }
  ]
}
```
Querying Nominatim

```
"features": [
{
  "type": "Feature",
  "properties": {
    "place_id": 26249932,
    "osm_type": "relation",
    "osm_id": 122604,
    "place_rank": 16,
    "category": "boundary",
    "type": "administrative",
    "importance": 0.7515295727100249,
    "addresstype": "city",
    "name": "Chicago",
    "display_name": "Chicago, Cook County, Illinois, United States"
  }
},
```

"Mom, can we have Google Maps?"
"We have Google Maps at home"
Querying Nominatim

```
"bbox": [
  -87.9400876, 41.644531,
  -87.5240812, 42.0230396
],
"geometry": {
  "type": "Point",
  "coordinates": [
    -87.6244212, 41.8755616,
    ...
  ]
}
```

– Mom, can we have G**gle Maps? – We have G**gle Maps at home
Photon

- Java/ElasticSearch
 - Search as you type
 - Typo tolerant (fuzzy search)
 - Multilingual
 - Ready made indexes, regularly updated
 - BUT: Updatable via Postgres/Nominatim
- Python library: github.com/astagi/pyphoton
Querying Photon

curl http://localhost:2322/api?q=chicago
Let’s choose a location 41.85003, -87.65005

– Mom, can we have G**gle Maps? – We have G**gle Maps at home
Mom, can we have Google Maps?

-We have Google Maps at home

Spatial query

```
SELECT ST_Contains(  
    ST_SetSRID(  
        ST_MakePoint(-87.65005, 41.85003), 4326)  
    FROM place  
WHERE osm_id=122604;
```

```
<table>
<thead>
<tr>
<th>st_contains</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
</tr>
</tbody>
</table>
```

(1 row)
Mom, can we have G**gle Maps? We have G**gle Maps at home

Another location 42.00697, -87.72319
Spatial query

```sql
SELECT ST_Contains(geometry, 
    ST_SetSRID(
        ST_MakePoint(-87.72319, 42.00697), 4326))
FROM place
WHERE osm_id=122604;

stcontains
-------------
f
(1 row)
```
Spatial query with JOIN

```sql
SELECT customer_id
FROM customer_addresses ca
JOIN place
ON ST_Contains(geometry,
   ST_SetSRID(ST_MakePoint(ca.long, ca.lat), 4326))
AND osm_id=122604;
```
Various use cases

- Find objects in area/jurisdiction
- Passing the object type is super powerful
- Deduplicate addresses
 - e.g. if geocoded coordinates are within 300ft
- Normalize addresses
 - With geocoding you don’t have to worry about parsing addresses

–Mom, can we have G**gle Maps? –We have G**gle Maps at home
Other tools

- Leaflet
- QGIS
- GeoServer
- MapServer
- Mapnik

Mom, can we have G**gle Maps? — We have G**gle Maps at home
Let’s keep in touch!

Mastodon: https://fosstodon.org/@vyruss

LinkedIn: https://linkedin.com/in/vyruss

YouTube: https://youtube.com/@JimmyAngelakos
Mom, can we have G**gle Maps?

– We have G**gle Maps at home

45% off for 3 months!
Code: PGDC24

25% off!
On: Amazon.com