Practical @
Partitioning in
Production with 5\ | / /,,;

Postgres POWER TO
Jimmy AngelaRos POSTGRES
eeeeeeeeeeeeee QL Architect 7, /[\\T

w EDB

@ EDB
We’ll be looking at:

{2

* Intro to Partitioning in PostgreSQL

POWER TO
 How? POST’GRES

* Practical Example
//A\'\.

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.

Introduction to
Partitioning in
PostgreSQL

@ EDB

What is partitioning?

* RDBMS context: division of a table into distinct independent tables
* Horizontal partitioning (by row) - different rows in different tables
* Why?

— Easier to manage

- Performance

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.

@ EDB

Partitioning in PostgreSQL
HISTORY

* Has had partitioning for quite some time now... PG 8.1 (2005)
— Inheritance-based
— Why haven’t | heard of this before?
— It’s not great tbh...

* Declarative Partitioning: PG 10 (2017)

— Massive improvement

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.

@ EDB

Declarative Partitioning

(PG 10+)
Specification of: By declaring a table (DDL):
* Partitioning method CREATE TABLE cust (id INT, signup DATE)

+ Partition key PARTITION BY RANGE (signup);

CREATE TABLE cust_2020
PARTITION OF cust FOR VALUES FROM
— Value determines data routing ('2020-01-01") TO ('2021-01-01");

- Column(s) or expression(s)

* Partition boundaries * Partitions may be partitioned

themselves (sub-partitioning)
© Copyright EnterpriseDB Corporation, 2021. All rights reserved.

Why?

@ EDB

PostgreSQL limits

(Hard limits, hard to reach)

Database size: unlimited

Tables per database: 1.4 billion

Table size: 32 TB
— Default block size: 8192 bytes

Rows per table: depends

— As many as can fit onto 4.2 billion blocks

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.

@ EDB

What partitioning can help with (i)
(Very large tables)

* Disk size limitations

— You can put partitions on different tablespaces
* Performance

— Partition pruning

— Table scans

— Index scans

- Hidden pitfalls of very large tables*

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.

10

@ EDB

What partitioning can help with (ii)
(Very large tables)

* Maintenance
- Deletions (some filesystems are bad at deleting large numbers of files)
— DROP TABLE cust_2020;
— ALTER TABLE cust DETACH PARTITION cust_2020;
* VACUUM
— Bloat

— Freezing - xid wraparound

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.

11

@ EDB

What partitioning is not

* Magic bullet

— No substitute for rational database design

* Sharding
— Not about putting part of the data on different nodes

* Performance tuning

— Unless you have one of the mentioned issues

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.

How?

13

@ EDB

Dimensioning
Plan ahead!

* Get your calculator out
- Dataingestion rate (both rows and size in bytes)
- Projected increases (e.g. 25 locations projected to be 200 by end of year)
— Data retention requirements

* Will inform choice of partitioning method and key
* Forinstance: 1440 measurements/day from each of 1000 sensors - extrapolate per year

* Keep checking if this is valid and be prepared to revise

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.

14

@ EDB

Partitioning method

Dimensioning usually makes this clearer

* Range: For key column(s) e.g. ranges of dates, identifiers, etc.
— Lower end: inclusive, upper end: exclusive

* List: Explicit key values stated for each partition

* Hash (PG 11+): If you have a column with values close to unique

- Define Modulus (& remainder) for number of almost-evenly-sized partitions

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.

15

@ EDB

Partition Key selection

Choose wisely - know your datal!

* Analysis
— Determine main keys used for retrieval from queries
— Proper key selection enables partition pruning
- Can use multiple columns for higher granularity (more partitions)
* Desirable
- High enough cardinality (range of values) for the number of partitions needed

— A column that doesn’t change often, to avoid moving rows among partitions

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.

16

@ EDB
Sub-partitioning

* Simply put, partitions are partitioned tables themselves. Plan ahead!

* CREATE TABLE transactions (..., location_code TEXT, tstamp TIMESTAMPTZ)
PARTITION BY RANGE (tstamp);
* CREATE TABLE transactions_2021_06

PARTITION OF transactions FOR VALUES FROM ('2021-06-01") TO ('2021-07-01")
PARTITION BY HASH (location_code);
* CREATE TABLE transactions_2021_06_p1

PARTITION OF transactions_2021_06 FOR VALUES WITH (MODULUS 4, REMAINDER 0);

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.

17

@ EDB

Partitioning by multiple columns

Be careful!

* CREATE TABLE transactions (..., location_code TEXT, tstamp TIMESTAMPTZ)
PARTITION BY RANGE (tstamp, location_code);

* CREATE TABLE transactions_2021_06_a PARTITION OF transactions
FOR VALUES FROM ('2021-06-01', 'AAA") TO ('2021-07-01', 'AZZ');

* CREATE TABLE transactions_2021_06_b PARTITION OF transactions
FOR VALUES FROM ('2021-06-01','BAA") TO ('2021-07-01', 'BZZ');
ERROR: partition "transactions_2021_06_b" would overlap partition
"transactions_2021_06_a"

* Because tstamp '2021-06-01' can only go in the first partition!

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.

18

@ EDB

What \Postgres does not do

core

* Automatic creation of partitions
— Create in advance
— Use acronjob

* Imperative merging/splitting of partitions
— Move rows manually

* Sharding to different nodes

= You may have to configure FDW manually

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.

Practical
Example

Partitioning a live production system

* Is your table too large to handle?

* Can partitioning help?

[RRRRRRRAAT]

I

s in constant use?

t

* What ifit

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.

20

@ EDB

The situation

Huge 20 TB table

* OLTP workload, transactions keep flowing in

Table keeps increasing in size

* VACUUM never ends

Has been running for a full month already...

* Queries are getting slower

Not just because of sheer number of rows...

21 © Copyright EnterpriseDB Corporation, 2021. All rights reserved.

@ EDB

* Hidden performance pitfall (i)

For VERY large tables

* Postgres has 1GB segment size

— Canonly be changed at
compilation time

— 20 TB table = 20000 segments
(files on disk)

* Why is this a problem?

- md.c =

22 © Copyright EnterpriseDB Corporation, 2021. All rights reserved.

This code manages relations that reside on magnetic disk

* Or at least, that was what the Berkeley folk had in mind when they named
* this file. 1In reality, what this code provides is an interface from

* the smgr API to Unix-like filesystem APIs, so it will work with any type
* of device for which the operating system provides filesystem support.

* It doesn't matter whether the bits are on spinning rust or some other

* storage technology

* Portions Copyright (c) 1996-2016, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California

* IDENTIFICATION

src/backend/storage/smgr/md.c

#include "postgres.h"

@ EDB

* Hidden performance pitfall (ii)

It
* Get number of blocks present in a single disk file

static BlockNumber
_mdnblocks(SMgrRelation reln, ForkNumber forknum, MdfdVec *seg)

{
off_t len;
len = FileSeek(seg->mdfd_vfd, ©L, SEEK_END);
if (len < @)
ereport(ERROR,
(errcode for file access(),
errmsg("could not seek to end of file \"%s\": %m",
FilePathName(seg->mdfd_vfd))));
/* note that this calculation will ignore any partial block at EOF */
return {BlockNumber) (len / BLCKSZ);
}

23 © Copyright EnterpriseDB Corporation, 2021. All rights reserved.

This loops 20000 times every time you
want to access a table page

— Linked list of segments
Code from PG 9.6

It has been heavily optimised recently
(caching, etc).

Still needs to run a lot of times

24

@ EDB

So what do we do?

Next steps

* Need to partition the huge table
— Dimensioning
- Partition method

— Partition key

* Make sure we’re on the latest version (PG 13)

— Get latest features & performance enhancements

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.

25

@ EDB

What is our table like?

It holds daily transaction totals for each point of sales

* Dimensioning

One partition per month will be about 30GB of data, so acceptable size

* Method, Key

Candidate key is transaction date, which we can partition by range

Check that there are no data errors (e.g. dates in the future when they shouldn’t be)

* Partition sizes don’t have to be equal

We can partition older, less often accessed data by year

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.

26

@ EDB

Problems

What things you cannot do in production

* Lock the table totally (ACCESS EXCLUSIVE) or prevent writes

— People will start yelling, and they will be right

* Cause excessive load on the system (e.g. I/0) or cause excessive disk space usage
- Can’t copy whole 20 TB table into empty partitioned table

— See above about yelling

* Present aninconsistent or incomplete view of the data

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.

27

The plan

Take it step by step

Rename the huge table and its indices

Create an empty partitioned table with the old huge table’s name

Create the required indices on the new partitioned table

— They will be created automatically for each new partition

Create first new partition for new incoming data

Attach the old table as a partition of the new table so it can be used normally*

* Move data out of the old table incrementally at our own pace

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.

@ EDB

Rename the huge table and its indices

-- Do this all in one transaction
BEGIN;

ALTER TABLE dailytotals RENAME TO dailytotals_legacy;
ALTER INDEX dailytotals_batchid RENAME TO dailytotals_legacy_batchid;

ALTER INDEX ...

28 © Copyright EnterpriseDB Corporation, 2021. All rights reserved.

@ EDB

Create empty partitioned table & indices

CREATE TABLE dailytotals (

totalid BIGINT NOT NULL DEFAULT nextval('dailytotals_totalid_seq')
, totaldate DATE NOT NULL
, totalsum BIGINT
, batchid BIGINT NOT NULL

)
PARTITION BY RANGE (totaldate);

CREATE INDEX dailytotals_batchid ON dailytotals (batchid);

29 © Copyright EnterpriseDB Corporation, 2021. All rights reserved.

@ EDB

Create partition for new incoming data

CREATE TABLE dailytotals_202106
PARTITION OF dailytotals
FOR VALUES FROM ('2021-06-01") TO ('2021-07-01");

30 © Copyright EnterpriseDB Corporation, 2021. All rights reserved.

@ EDB

Attach old table as a partition (i)

DO $$

DECLARE earliest DATE;
DECLARE latest DATE;
BEGIN

-- Set boundaries
SELECT min(totaldate) INTO earliest FROM dailytotals_legacy;
latest :='2021-06-01"::DATE;

31 © Copyright EnterpriseDB Corporation, 2021. All rights reserved.

@ EDB

Attach old table as a partition (ii)

-- HACK HACK HACK (only because we know and trust our data)
ALTER TABLE dailytotals_legacy

ADD CONSTRAINT dailytotals_legacy_totaldate

CHECK (totaldate >= earliest AND totaldate < latest)

NOT VALID;

-- You should not touch pg_catalog directly
UPDATE pg_constraint

SET convalidated = true

WHERE conname = 'dailytotals_legacy_totaldate’;

32 © Copyright EnterpriseDB Corporation, 2021. All rights reserved.

33

@ EDB

Attach old table as a partition

ALTER TABLE dailytotals
ATTACH PARTITION dailytotals_legacy
FOR VALUES FROM (earliest) TO (latest);

END;

$$ LANGUAGE PLPGSQL;
COMMIT;

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.

@ EDB

Move data from old table at our own pace

* Forinstance, during quiet hours for the system, in scheduled batch jobs, etc.

WITH rows AS (
DELETE FROM dailytotals_legacy d
WHERE (totaldate >='2020-01-01' AND totaldate < '2021-01-01")
RETURNING d.*)

INSERT INTO dailytotals SELECT * FROM rows;

* Inthe same transaction: DETACH the old table, perform the move, reATTACH with changed
boundaries. Rinse and repeat!
* Make sure the target partition exists!

34 © Copyright EnterpriseDB Corporation, 2021. All rights reserved.

35

@ EDB

Partitioning improvements

Make sure you're on the latest release so you have them!

* PG11: DEFAULT partition, UPDATE on partition key, HASH method, PKs, FKs, Indexes, Triggers
* PG12: Performance (pruning, COPY), FK references for partitioned tables, ordered scans

* PG13: Logical replication for partitioned tables, improved performance (JOINs, pruning)

(Soon) PG14: REINDEX CONCURRENTLY, DETACH CONCURRENTLY, faster UPDATE/DELETE

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.

36

@ EDB

To conclude...

* Know your data!
* Upgrade - be on the latest release!

* Partition before you get in deep water!

* Find me on Twitter: @vyruss

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.

iy

